18 minute read

Von der Stadtbahnbrücke in Stuttgart zur Oderbrücke bei Küstrin

Next Article
Impressum

Impressum

Innovative Netzwerkbogen: Leichtbau auch für schweren Schienenverkehr Von der Stadtbahnbrücke in Stuttgart zur Oderbrücke bei Küstrin

von Lorenz Haspel

Advertisement

Das Prinzip der Netzwerkbogenbrücke erlaubt die Realisierung von effizienten und verformungsarmen Brückentragwerken unter Einsatz von schlanken, vorwiegend normalkraftbeanspruchten Haupttraggliedern. Hohe ermüdungswirksame Lastwechselamplituden, winderregte Schwingungen und die Vermeidung von Druckkräften stellen an die Hänger von Netzwerkbogen außergewöhnliche Anforderungen. Für die Stadtbahnbrücke über die A 8 bei Stuttgart wurden dafür erstmals Zugglieder aus Carbon eingesetzt und deren Eignung für hohe Zug- und Ermüdungsbelastung bestätigt. Darüber hinaus wurde erkennbar, dass die geringe Steifigkeit der schlanken Carbonzugglieder zu einem vorteilhaften Gesamttragverhalten des Netzwerkbogens führt und zudem Materialeinsparungen ermöglicht. Im Zuge einer Anwendung für den Ersatzneubau der zweigleisigen Oderbrücke Küstrin wird realisiert, was auf den ersten Blick nicht gleich zusammenpassen will: Ressourcenschonung und CO2-Einsparung durch Leichtbau für schweren Eisenbahnverkehr.

1 Stadtbahnbrücke Stuttgart © sbp/Andreas Schnubel

2 Oderbrücke Küstrin: siegreicher Wettbewerbsentwurf von Schüßler-Plan und Knight Architects; hier dargestellt die technische Alternativlösung mit Carbonhängern von schlaich bergermann partner © schlaich bergermann partner

1 Ein Netzwerkbogen für die Stadtbahn Stuttgart

Um das südliche Stadtgebiet Stuttgarts, das Messegelände und den neuen Fernbahnhof am Flughafen Stuttgart besser erschließen zu können, wird die Stadtbahnlinie U 6 bis zum Flughafen und zur Messe Stuttgart verlängert. Hierzu muss die Bundesautobahn A 8 östlich der Anschlussstelle Stuttgart-Degerloch (B 27) überquert werden. Diese neue zweigleisige Querung befindet sich in exponierter Lage, in einem komplexen Umfeld eines großen Verkehrsknotens. Die A 8 ist eine der wichtigsten Verkehrsadern des Landes und die Anschlussstelle StuttgartDegerloch eines der stark frequentierten Tore nach Stuttgart. Die zu querenden Spuren der A 8 sowie die begleitenden Ein- und Ausfädelspuren verlaufen im Bereich der Querung in Dammlage ca. 1–3 m über dem umliegenden Gelände. Die neue Trasse muss daher auf vor- und nachgelagerten Rampen die erforderliche Höhe zur Überwindung des Lichtraumprofiles gewinnen. Einschränkungen des fließenden Verkehrs sollten an diesem wichtigen Verkehrsknotenpunkt vermieden werden. Deshalb wurde eine Brücke gewählt, deren Hauptfeld alle Verkehrsflächen stützenfrei überspannt. Auf die Weise wurden umfangreiche Baumaßnahmen auf den schwer zugänglichen schmalen Grünstreifen zwischen den Verkehrsflächen und damit verbundene Beeinträchtigungen des fließenden Verkehrs vermieden. Gleichzeitig ergeben sich damit eine maximale Transparenz und gute Sichtbeziehungen für die Autofahrer.

3 Verbreitung von Netzwerkbogenbrücken ab 1963, weltweite Auswahl von 153 Bauwerken © sbp/Marion Macaudiere

4 Verformungsbild und Differenzkräfte in Netzwerkhängern infolge halbseitiger Belastung: rot = zusätzliche Zugkraft, blau = Abbau der Zugkraft (Druckkraft) © schlaich bergermann partner

Aufgrund der vorgegebenen Trassierung der neuen Stadtbahnlinie konnte bei einer Spannweite von ca. 80 m nur eine Brücke mit obenliegendem Tragwerk verwirklicht werden. Mit dem Ziel, eine möglichst transparente und elegante Bogenbrücke zu realisieren, fiel die Wahl auf eine Netzwerkbogenbrücke. Auch die Herstellung in Seitenlage neben der Autobahn mit anschließendem Einschub über die Verkehrsflächen ließ sich mit dieser Konstruktion gut umsetzen. Um die sehr exponierte Brückensilhouette weitestgehend offen und transparent zu halten, wurden beidseitig zwei zusätzliche Seitenfelder angefügt und der Bogen bis zum Straßenniveau weitergeführt. Für maximale Robustheit und minimalen Wartungsaufwand wurde die Brücke als integrales Bauwerk entworfen. Dabei sollten die Auflagerwände an den Widerlagern und die Tiefgründungen der Bogenfundamente in Längsrichtung möglichst nachgiebig sein, um Zwangskräfte zu minimieren.

2 Ursprünge des Netzwerkbogens

Im späten 19. Jahrhundert, etwa zur gleichen Zeit, als Joseph Langer die heute als »Langerscher Balken« bekannte Form der Stabbogenbrücke entwickelte, wurde auch das Prinzip des Netzwerkbogens erstmals angewandt. In Riesa wurde 1878 eine Bogenbrücke mit gekreuzten Füllstäben errichtet, wobei das Tragverhalten von Fachwerk und Bogen kombiniert wurde. Die Aussteifungen und die Komplexität der Details der planmäßig auf Druck beanspruchten Diagonalen lassen erahnen, warum sich der Stabbogen mit vertikalen, nur auf Zug belasteten Hängern deutlich schneller verbreitete. Eine Anzahl von Bogenbrücken in Dänemark, Frankreich und Schweden aus dem frühen 20. Jahrhundert mit geneigten, jedoch nicht überkreuzten Hängern belegt, dass im Spannweitenbereich ≥ 100 m die Vorteile geneigter Hänger weiterhin genutzt wurden. Allerdings traten bereits damals aufgrund der steil geneigten Hänger Schwierigkeiten mit ausfallenden, also auf Druck belasteten Hängern bei einseitiger Verkehrslast auf. Es wurde erkannt, dass das Problem mit flach geneigten Hängern beherrschbar wird, aber erst durch die Verwendung zweier sich überkreuzender Hängerscharen gelang es dem norwegischen Ingenieur Per Tveit 1963 mit entsprechend flachen, ausschließlich auf Zug beanspruchten Hängern die Vorteile des sogenannten Netzwerkbogens mit extrem schlanken Bogen und Fahrbahnplatten voll zu nutzen. Die im selben Jahr fertiggestellte Fehmarnsundbrücke wurde als kombinierte Straßen- und Eisenbahnbrücke mit deutlich robusteren Querschnitten ausgestattet, nutzt jedoch das gleiche vorteilhafte Konstruktionsprinzip. Bis zum Jahr 2000 wurde in Deutschland keine weitere Brücke nach diesem Prinzip errichtet, während in Japan schon seit den späten 1960er Jahren über 50 Netzwerkbogenbrücken entstanden. Um die Jahrtausendwende wuchs das Interesse an diesem Brückentyp in Europa und wenig später auch in den USA.

3 Tragprinzip des Netzwerkbogens

Durch die aussteifende Wirkung der geneigten, sich kreuzenden Hängerscharen können Bogen und Überbau beim Netzwerkbogen sehr schlank ausgebildet werden, beschreibt Per Tveit [1] die Vorteile dieses Tragwerktyps und zeigt, dass sich die deutliche Reduktion der Biegemomente in Bogen und Überbau im Vergleich zu anderen Bogentragwerken auch wirtschaftlich und ökologisch in einer Einsparung der Stahltonnage niederschlägt. Gerade im Kontext hoher Verkehrslasten aus Schienenverkehr zeichnet sich diese Bauweise durch eine effektive, wirtschaftliche und ästhetische Tragkonstruktion aus, siehe Gauthier und Kronthal [2]. Das lässt sich insbesondere auf das Tragverhalten des Netzwerkbogens bei halbseitiger Last zurückführen.

5 6 Stadtbahnbrücke: freistehender Bogen im Montagezustand und mit montiertem Hängernetz © sbp/Lorenz Haspel/Andreas Schnubel

7 8 Nationalstadion Warschau: Montagezustand und fertiggestelltes Ringseildach © ncs, narodowe centrum sportu

Der Lastabtrag erfolgt vornehmlich über zusätzliche Normalkraftbeanspruchung (Be- und Entlastung) der Hängerebene, wie in Bild 5 dargestellt. Die beiden geneigten Hängerebenen wirken wie ein fachwerkartig aufgelöstes Schubfeld zwischen Bogen und Überbau, deren Biegebeanspruchung und Verformung damit deutlich reduziert werden. Für die integrale Lagerung der Stadtbahnbrücke spielen die damit einhergehenden kleinen Endtangentenrotationen an den Kämpfern eine wichtige Rolle. In der Literatur wird auf das komplexe Tragverhalten und die besonderen Herausforderungen im Kontext der hoch beanspruchten Hänger und deren Anschlüsse eingegangen [2][3][4]. Die Vermeidung von Druckkräften in den schlanken Hängern, das Auftreten von windinduzierten Schwingungen und die Vermeidung unerwünschter Zwangsspannungen in dem vielfach statisch überbestimmten Hängernetz im Zuge der Errichtung stellen vor allem in Verbindung mit den hohen Ermüdungslasten eine besondere technische Herausforderung dar. Geißler [4] erläutert außerdem, »dass die Normalkrafteinflusslinien nicht nur von den objektspezifischen Eingangsgrößen Stützweite und Bogenstich sowie der Netzgeometrie abhängen, sondern aufgrund des statisch unbestimmten Systems auch von den Steifigkeitsverteilungen in Bogen und Versteifungsträger«. Der Einfluss der Steifigkeit des Hängernetzes bleibt hierbei noch unbeachtet, kann aber bei der Verwendung von Zuggliedern aus Carbon Fibre Polymer Composite (CFPC), nachfolgend »Carbon« genannt, eingesetzt werden, um das Gesamttragverhalten nachhaltig zu begünstigen. Im Gegensatz zum Stabbogen ist beim Netzwerkbogen für den Lastabtrag aus einseitiger Last auch dann ein Lastpfad vorhanden, wenn Bogen und Deck nahezu keine Biegesteifigkeit aufweisen.

4 Seilgestützter Druckbogen 4.1 Prinzipien

Ein ähnliches Prinzip seilgestützter Druckbogen liegt vielen weit gespannten Stadionüberdachungen zugrunde. Ähnlich einer Fahrradfelge wird ein hoch auf Druck belasteter Ring durch das Seiltragwerk so in seiner Lage gehalten, dass ein Ausweichen in der Ebene des gekrümmten Druckgliedes nicht möglich ist.

4.2 Stabilisierung durch die Seilebene

Insbesondere bei der Montage solcher Tragwerke kann die Wirkung des Seilsystems gut beobachtet werden. Bild 7 zeigt den Druckring des Nationalstadions Warschau während der Montage. Zunächst wird der Druckring geschlossen und das Seiltragwerk auf den Rängen liegend vormontiert. Um das Seilsystem anzuheben und in den Ring einzubauen, müssen alle radialen »Speichen« gleichzeitig mit entsprechender Kraft immer weiter gespannt werden, und zwar in einer Weise, dass die Form des Druckrings zu jedem Zeitpunkt nahe der Endgeometrie liegt. Würde man an einer Seite unplanmäßig stark spannen, würde sich dort der Ring nach innen bewegen und erhebliche Biegemomente erfahren und gegebenenfalls versagen. Für die Montage ist daher eine ausreichende Biegesteifigkeit des Druckringes wichtig. Nachdem das Seilsystem vollständig gespannt ist, wirkt es für den gekrümmten Druckgurt als Aussteifung in der Dachebene und verhindert zuverlässig dessen Ausweichen. Die radialen Rückstellkräfte aus dem Seiltragwerk sind bei diesem Tragwerkstyp mit innenliegendem Zugring aus geometrischen Gründen grundsätzlich immer größer als die Abtriebskräfte eines ausgelenkten Druckringknotens. Im Endzustand könnte der Druckring daher auch als Gelenkkette auf Druck ohne jegliche Biegesteifigkeit auskommen. Eine übermäßig große Biegesteifigkeit des Druckringes wirkt sich sogar ungünstig aus: Sie hindert das Seilsystem daran, sich bei asymmetrischer Laststellung entsprechend zu verformen, um die gewünschten Rückstellkräfte im Seiltragwerk zu mobilisieren. Der Druckring wirkt hier unnötigerweise auf Biegung mit. Um ein effizientes Tragwerk zu gewährleisten, ist es zudem unerlässlich, die Form des Druckringes zusammen mit dem Seilsystem so auf die Belastungssituation abzustimmen (Formfindung), dass sich aus den permanenten Einwirkungen ein rein axialer Belastungszustand im Druckglied ergibt.

9 Stadtbahnbrücke: Blick in Längsrichtung mit Verlauf der Bogen © sbp/Lorenz Haspel 10 Entwicklung der Bogenquerschnitte entlang des Bogens: blau = Querschnittsfläche, rot = Flächenträgheitsmoment um die vertikale Achse © schlaich bergermann partner

Beim Netzwerkbogen handelt es sich zwar grundsätzlich um eine andere Art des seilgestützten Druckgliedes – es besteht jedoch eine gewisse Analogie in Bezug auf das Zusammenwirken des Seilsystems und des Bogens. Bei ausreichend vorgespannten Hängern wirkt das Hängernetz als aussteifende Ebene für den Druckbogen und verkürzt dessen Knicklänge ähnlich wie beim elastisch gebetteten Balken deutlich. Auch hier beteiligt sich ein Bogen mit großer Biegesteifigkeit in der Bogenebene bei einseitiger Last am Lastabtrag, obwohl für eine solche Last über das Hängernetz ein alternativer Lastpfad zur Verfügung steht. Es deutet sich an, dass ein Netzwerkbogen mit geringerer Biegesteifigkeit in der Hängerebene zu einem effizienteren Tragwerk führen kann. Gleichwohl wird eine gewisse Biegesteifigkeit zwingend erforderlich, um beispielsweise auch beim Ausfall eines oder gegebenenfalls mehrerer Hänger ein zuverlässiges und robustes Tragverhalten zu gewährleisten. Dieser Zustand kann zur Festlegung einer Mindestbiegesteifigkeit herangezogen werden.

4.3 Bogenquerschnitt

Es ist daher nicht ausschließlich dem Entwurfsgedanken eines schlanken Tragwerkes geschuldet, dass der Bogen der Stadtbahnbrücke im Scheitel lediglich 30 cm Bauhöhe misst. Für die freistehenden Bogen ohne Windverband spielt zusätzlich die Stabilisierung gegen Ausweichen aus der Bogenebene eine wichtige Rolle. Ein veränderlicher Bogenquerschnitt mit vergrößerter Biegesteifigkeit in Querrichtung in Bogenmitte zeigte sich in diesem Zusammenhang vorteilhaft. Am Kämpfer weist der Bogen Außenmaße von 1,00 m × 0,60 m auf, weitet sich in der Draufsicht und verjüngt sich in der Ansicht zur Bogenmitte auf 0,30 m × 1,36 m. Die Querschnittsfläche wird hierbei annähernd konstant gehalten, während das Flächenträgheitsmoment um die vertikale Achse zum Bogenscheitel ansteigt (Bild 10). Die Verzweigungslast konnte dabei im Vergleich zu einem konstanten Bogenquerschnitt deutlich gesteigert werden. Mehrfach wurde im Projektteam darüber diskutiert, wie viel mehr Stahl ein freistehender Bogen im Vergleich zu einem mit Windverbänden ausgesteiften Tragwerk benötigt. In einer Wettbewerbsstudie wurden unlängst beide Varianten für einen Netzwerkbogen mit 80 m Spannweite gegenübergestellt. Für den freistehenden Bogen ergab sich infolge der Stabilitätsbetrachtungen des Bogens eine reduzierte effektive Nutzbarkeit der Bogen von ca. 70 %. Für die Lösung mit Windverband zeigte sich eine zusätzlich erforderliche Stahlmasse von ca. 30 %, bezogen auf die Struktur der Bögen. Eine signifikante und allgemeingültige Aussage zum vorteilhafteren System ist auf jener Basis nicht ableitbar.

4.4 Bogenform

Bei Bogen mit konstant vertikaler Last ergibt sich als ideale Stützlinie eine quadratische Parabel – unter Eigengewichtsbelastung eine Hyperbelkosinusfunktion, die sich aber bei flachen Bogen durch eine quadratische Parabel annähern lässt. Beim Netzwerkbogen hingegen wird wie bei einem radial beanspruchten Druckglied, siehe auch »Speichenrad« im vorhergehenden Abschnitt, als erste Näherung der Stützlinie häufig von einer Kreisbogenform ausgegangen. Aufgrund des vielfach statisch überbestimmten Systems und durch planmäßiges Vorspannen des Hängernetzes kann auf den Bogen ein Belastungszustand einwirken, dessen zugehörige momentenfreie Bogenform von einem Kreisbogen abweicht. Eine Optimierung der Bogenform vermag dann zu einer deutlichen Reduktion der Bogenmomente im Eigengewichtszustand zu führen. Im Fall der Stadtbahnbrücke wurde die Bogenachse im Zuge einer Formfindung nahe einer Parabel vierter Ordnung definiert und anschließend zur Fertigung über drei Kreisbogensegmente genähert. Im Fall der Oderbrücke Küstrin, vergleiche Kapitel 6, liegt im Eigengewichtszustand ein asymmetrischer Beanspruchungszustand vor, auf welchen mit der Bogenform reagiert wurde.

4.5 Hängeranschlüsse am Bogen

Als Endbeschläge der Carbonzugglieder kommen gefräste Kauschen (Thimbles) aus Titan in Kombination mit einem Bolzen aus Duplexstahl zum Einsatz (Bild 11). Titan hat sich in dieser Funktion als Endbeschlag von Carbonzuggliedern seit Jahren in extrem korrosiver Umgebung bei Marineanwendungen bewährt, während bei Edelstählen in Kontakt mit Carbon Kontaktkorrosionsschäden möglich sind. Um auch am Übergang zu den Hängerlaschen aus S355 eine dauerhafte Materialpaarung zu gewährleisten, wurden die Bohrungen der Hängerlaschen mit Bronzebuchsen ausgestattet.

11 Stadtbahnbrücke: Details der oberen Hängerverankerung am Bogen © sbp/Lorenz Haspel

12 Hängermontage bei der Stadtbahnbrücke © sbp/Lorenz Haspel 13 Stadtbahnbrücke: Vormontage des Bogenfeldes und Vorbereitung für den Einschub über die Autobahn © octonauten

5 Hängernetz aus Carbon

Die Entscheidung, bei der Stadtbahnbrücke erstmals Zugglieder aus Carbon für die Hänger eines Netzwerkbogens einzusetzen, wurde zunächst vor dem Hintergrund der außergewöhnlich guten Ermüdungsfestigkeit [5] und der daraus resultierenden Reduktion der Querschnitte getroffen. Erst in der weiteren Planung zeigte sich das Potential dieser Lösung auch im Hinblick auf das Gesamttragverhalten des Systems Netzwerkbogen durch Vergleichmäßigung der Hängerkräfte, Vermeidung von auf Druck ausfallenden Hängern sowie die vorteilhaften dynamischen Eigenschaften der leichten, hoch vorgespannten Zugglieder. Beim Einsatz von Carbonzuggliedern [6] als Hänger von Netzwerkbogen lassen sich verschiedene Eigenschaften des Materials gleichzeitig vorteilhaft nutzen: Aufgrund der Unempfindlichkeit gegenüber Ermüdungsbeanspruchung können Hänger von Netzwerkbögen aus Carbon deutlich schlanker ausgebildet werden als herkömmliche. Bemessungsrelevant für die Dimensionierung ist nunmehr nicht der Ermüdungswiderstand, sondern die maximal ertragbare Zugkraft im Grenzzustand der Tragfähigkeit (ULS). Die Steifigkeit dieser Carbonhänger liegt damit in etwa bei 20–25 % jener von Stahlhängern. In der Konsequenz ergeben sich bei gleicher Vorspannkraft vier- bis fünffach größere Dehnungen im Eigengewichtszustand. Dieser Umstand trägt maßgeblich dazu bei, dass die Tendenz zu Seilausfall bei Hängern aus Carbon deutlich geringer ist – vereinfacht kann man sagen, dass der Überbau sich lokal deutlich mehr heben muss, um einen vorgedehnten Carbonhänger ganz zu entlasten. Aus den dargelegten Zusammenhängen ergeben sich neue Randbedingungen für ein optimales Hängernetzwerk, welche deutlich von den derzeitig angewandten Planungsparametern für Stahlhänger abweichen. Eine Optimierung zur Begrenzung der Schwingbreiten ist nicht erforderlich, es kann auf die Begrenzung maximaler Zugkräfte optimiert werden. Verstärkte Hänger mit abweichendem Querschnitt im Bereich der Bogenfußpunkte sind nicht erforderlich. Im Ergebnis lassen sich sehr effiziente Hängernetzwerke erzielen, die mit einem konstant bleibenden Hängerquerschnitt über einen weiten Bereich eine gleichmäßig hohe Auslastung der Hänger ermöglichen. Zudem zeichnen sich diese Carbonhängernetzwerke mit gleichmäßiger Hängerverteilung durch ein harmonisches Gestaltungsbild aus. Das geringe Längengewicht trägt maßgeblich zu den positiven dynamischen Eigenschaften bei, wodurch Maßnahmen zur Dämpfung der Hänger zur Vermeidung von winderregten Schwingungen weitgehend oder ganz entfallen können. Die Beständigkeit gegenüber Witterungseinflüssen spielt vor dem Hintergrund einer zuverlässigen Verfügbarkeit und langen Lebensdauer der Bauteile sowie im Hinblick auf die zu erwartenden Wartungs- und Folgekosten eine wichtige Rolle. Das geringe Bauteilgewicht der Hänger erlaubt eine manuelle Montage, welche ohne Rücksicht auf Temperatur- und Witterungseinflüsse und ohne Einhausung erfolgen kann. Wie auch bei anderen austauschbaren Hängersystemen ergibt sich die Option, Hänger gezielt und präzise vorzuspannen, jederzeit nachzuspannen, zu Inspektionszwecken zu entnehmen oder zu ersetzen. Unter wirtschaftlichen und ökologischen Gesichtspunkten ist das Einsparungspotential im Gesamttragwerk am weitreichendsten, weil auf Ballastieren des Überbaus zur Vermeidung von Hängerausfällen verzichtet werden kann. Das Potential, durch weitere Optimierung des Hängernetzes das Gesamttragverhalten des Systems Netzwerkbogen vorteilhaft zu steuern, wurde erst Stück für Stück erkennbar und ließ sich bei der Erstanwendung an der Stadtbahnbrücke noch nicht in vollem Umfang ausschöpfen. Erst am Beispiel der zweigleisigen Oderbrücke mit 130 m Hauptspannweite und erhöhten Eisenbahnverkehrslasten (a = 1,21) werden die vorteilhaften Eigenschaften des Carbonnetzwerkbogens deutlich.

14 Oderbrücke Küstrin: gestalterischer Entwurf von Schüßler-Plan und Knight Architects; hier dargestellt die technische Alternativlösung mit Hängern aus Carbon nach dem Konzept von schlaich bergermann partner

15 Oderbrücke Küstrin: Netzwerkbogen mit monolithisch angeschlossenen Seitenfeldern © schlaich bergermann partner

6 Effizienter Leichtbau für die Oderbrücke 6.1 Entwurf und Alternative

Das Gestaltungskonzept für die Oderbrücke bei Küstrin (Bild 14) geht aus einem Realisierungswettbewerb hervor, den Knight Architects und Schüßler-Plan mit ihrem Siegerentwurf für sich entscheiden konnten: einen »strahlend weißen eleganten Netzwerkbogen, welcher Polen und Deutschland auf Augenhöhe miteinander verbindet«. Das zur Ausführung kommende Tragwerk orientiert sich sehr eng am Gestaltungskonzept des Wettbewerbsgewinners. Die technisch optimierte, von sbp geplante Alternativlösung verwendet jedoch ein Hängernetz aus Carbonzugelementen. Basierend auf den Erfahrungen bei der Stadtbahnbrücke in Stuttgart, wurde die Eignung von Carbonhängern für die Oderbrücke Küstrin untersucht. Im Rahmen eines durch Prof. Dr.-Ing. Gerhard Hanswille begleiteten umfangreichen Gutachterverfahrens und auf Basis von Bauteilversuchen erteilte das Eisenbahnbundesamt eine Zustimmung im Einzelfall (ZiE) für die Umsetzung.

6.2 Netzwerkbogen mit Durchlaufwirkung

Die Netzwerkbogen der Stadtbahnbrücke Stuttgart und der Oderbrücke Küstrin weisen eine Besonderheit auf: In beiden Fällen wird der Überbau am Bogenkämpfer monolithisch mit Seitenfeldern fortgesetzt. Aus den Einflüssen der Seitenfelder resultieren zusätzliche Beanspruchungen für das Hängernetz des Netzwerkbogens, das heißt, bei entsprechender Laststellung werden die maßgebenden maximalen Hängerkräfte vergrößert. Gleichzeitig ergeben sich Laststellungen in den Seitenfeldern, die für die maßgebenden Hänger mit minimaler verbleibender Zugkraft eine weitere Entlastung bewirken. Daraus folgen einerseits vergrößerte ermüdungswirksame Lastwechsel der Hänger, die an den Einspannstellen mit den verformungsbedingten Rotationen am Hängeranschluss zu überlagern sind. Andererseits vergrößert sich durch die Durchlaufwirkung die ohnehin schwer beherrschbare Anforderung, eine vollständige Entlastung der Hänger (Hängerausfall infolge vollständigen Abbaus der Zugkräfte) im Ultimate Limit State (ULS) zu vermeiden. Die Gestaltung des Hängernetzes wurde im aktuellen Tragwerksentwurf für die Eigenschaften der Carbonzugglieder optimiert. Mit bloßem Auge kaum zu erkennen ist zudem eine Optimierung der Bogengeometrie: Diese weicht von einer symmetrischen Bogen- oder Parabelform ab und reagiert damit im Zuge einer Formfindung auf die asymmetrischen Randbedingungen der Lagerung des Bogens. Der Bogenquerschnitt wird, wie auch bei der Stadtbahnbrücke Stuttgart, zur Bogenmitte hin in der Ansicht verjüngt und im Grundriss aufgeweitet, um bei nahezu gleichbleibender Querschnittsfläche eine zur Bogenmitte hin vergrößerte Knickstabilität um die vertikale Achse zu erzielen.

6.3 Life Cycle Assessment

In einer vergleichenden Analyse des ökologischen Fußabdruckes wurden die Tragwerkslösungen mit Flachstahlhängern und Carbonhängern einander gegenübergestellt. Carbon hat aufgrund seines hohen Energieverbrauches in der Herstellung einen aktuell (noch) sehr ungünstigen ökologischen Fußabdruck. Am Hängeranschluss werden zudem mehrere Bauteile aus Titan und verschiedenen Edelstählen eingesetzt. Betrachtet man lediglich die beiden Hängersysteme, ergibt sich auf Basis der aktuellen Datengrundlage für das System mit Carbonhängern ein ca. 30 % schlechteres ökologisches Ergebnis. Der Anteil der Hänger am Gesamttragwerk ist jedoch gering:

In der Betrachtung der Gesamttonnagen ist eine deutliche Einsparung an Beton im Überbau erkennbar, welche darauf zurückzuführen ist, dass im Falle der Carbonhängerlösung auf eine Ballastierung verzichtet werden kann. Die Reduktion des Eigengewichtes im Überbau schlägt sich überdies in einer Reduktion der Stahltonnagen in Bogen und Versteifungsträger nieder. Im direkten Vergleich ergibt sich insgesamt eine Reduktion des ökologischen Fußabdruckes von 20 %. Auch wenn die Aussagekraft von Life-Cycle-Analysen kritisch im Kontext zu werten ist, lässt sich allein an der beobachteten Reduktion des Tragwerkseigengewichtes von insgesamt 25 % unschwer die Tragweite der Einsparungen ablesen. Sekundäre Effekte wie mögliche Einsparungen in Unterbauten und Gründungen sind dabei noch nicht berücksichtigt.

7 Fazit

Netzwerkbogen erlauben systembedingt die Realisierung effizienter, verformungsarmer Brückentragwerke. Durch geeignete Wahl des Bogenquerschnittes und der Bogenform können die Vorteile des Netzwerkbogens optimal genutzt werden. Mit der Materialsubstitution der hoch belasteten Hänger steht eine Alternative zur Verfügung, welche die Prinzipien des Leichtbaus auch für schwere Eisenbahnverkehrslasten erschließt: Mit nur 2–3 Gew.-% Carbon im Vergleich zu Hängern aus Stahl lässt sich die »Achillesferse« des Netzwerkbogens durch eine robuste und dauerhafte Lösung ersetzen. Gleichzeitig führen die mechanischen Eigenschaften von Carbon zu einer vorteilhaften Veränderung des Systemverhaltens von Netzwerkbogen, wodurch ein Lösungsansatz gegen Hängerausfall und wirbelerregte Schwingungen vorliegt. Einsparungen am Tragwerkseigengewicht von 25 % lassen das Potential dieser Lösung bezüglich Ressourcenschonung in wirtschaftlicher und ökologischer Hinsicht erkennen.

Autor: Dipl.-Ing. Lorenz Haspel schlaich bergermann partner sbp GmbH, Stuttgart 16 Oderbrücke Küstrin: vergleichende Betrachtung des ökologischen Fußabdruckes © schlaich bergermann partner/Eidgenössische Materialprüfung- und -forschungsanstalt (Urs Meier)

Literatur [1] Tveit, P.: The Network Arch. 2015. Online: https:// home.uia.no/pert (abgerufen am 26.11.2021).

Will be updated occasionally, as long as the author is active. [2] Gauthier, P.; Krontal, L.: Erfahrungen mit Netzwerkbogenbrücken im Eisenbahnbrückenbau; in:

Stahlbau 79, H. 3, 2010, S. 199–208. [3] Fettke, M.: Phänomen der wirbelerregten Querschwingungen bei Netzwerkbogenbrücken im

Eisenbahnverkehr; in: Stahlbau 86, H. 12, 2017,

S. 1063–1072. [4] Geißler, K.; Steinmann, U.; Graße, W.: Netzwerkbogenbrücken. Entwurf, Bemessung, Ausführung; in: Stahlbau 77, H. 3, 2008, S. 158–171. [5] Meier, U.; Winistörfer, A.; Haspel, L.: World’s First

Large Bridge Fully Relying on Carbon Fiber Reinforced Polymer Hangers; in: SAMPE Journal, 57(1), 2021, S. 22–30. [6] Schlaich, M.; Zwingmann, B.; Liu, Y.: Zugelemente aus CFK und ihre Verankerungen; in: Bautechnik 89, H. 12, 2014, S. 841–850.

Stadtbahnbrücke Stuttgart

Bauherr Stuttgarter Straßenbahnen AG, unterstützt durch das Tiefbauamt der Stadt Stuttgart

Entwurf und Planung schlaich bergermann partner sbp GmbH, Stuttgart

Bauteilversuche und Gutachten Carbon Prof. Urs Meier, Eidgenössische Materialprüfungs- und -forschungsanstalt (EMPA), Dübendorf, Schweiz

Prüfingenieur Prof. Dr.-Ing. Ulrike Kuhlmann, Stuttgart

Geotechnik Prof. Dr.-Ing. E. Vees und Partner Baugrundinstitut GmbH, Leinfelden-Echterdingen

Geotechnischer Prüfer Prof. Dr.-Ing. habil. Christian Moormann, Stuttgart

Bauausführung Arbeitsgemeinschaft: Adam Hörnig Baugesellschaft mbH & Co. KG, Aschaffenburg (Massivbau, integrale Gründung) MCE GmbH, Linz, Österreich (Stahlbau, Montage Bogen und Hänger, Einschub)

Carbonhänger Carbo-Link AG, Fehraltdorf, Schweiz (Subunternehmer von MCE) Oderbrücke Küstrin

Bauherr DB Netz AG, Anlagen- und Projektmanagement Regionalnetze Ost, Berlin

Gestaltungskonzept und Vorplanung Knight Architects, High Wycombe, Großbritannien Schüßler-Plan Ingenieurgesellschaft mbH, Berlin

Gründung, Unterbauten und Verkehrsanlagen Schüßler-Plan Ingenieurgesellschaft mbH, Berlin

Überbau schlaich bergermann partner sbp GmbH, Stuttgart

Prüfingenieur Prof. Dr.-Ing. Karsten Geißler, Berlin

Bauteilversuche »Carbon« Eidgenössische Materialprüfungs- und -forschungsanstalt (EMPA), Dübendorf, Schweiz

ZiE-Gutachter Prof. Dr.-Ing. Gerhard Hanswille, Bochum

Geotechnik GuD Geotechnik und Dynamik Consult GmbH, Berlin

Geotechnischer Prüfer Dr.-Ing. Lutz Vogt, Dresden

Bauausführung Sächsische Bau GmbH, Dresden

Carbonhänger Carbo-Link AG, Fehraltdorf, Schweiz

This article is from: