RESEARCH & DEVELOPMENT
Nanotherapeutics
Recent developments and prospects for the treatment of various diseases The recent applications of nanotherapeutics have shown remarkable improvements in various diseases treatment, and this led to a tremendous positive impact on healthcare delivery. Due to the high potentials and manifested benefits of nanotherapeutics, their popularity is increasing, and there is a shift of focus toward them in finding solutions to the limitations posed by conventional therapeutic systems. Nafiu Aminu, Department of Pharmaceutics and Pharmaceutical Microbiology Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto
N
anotherapeutics is the branch of nanotechnology that deals with the application of nanoparticulate drug delivery systems to treat or manage diseases, by specific delivery of a therapeutic agent to a targeted location in the body. Nanotherapeutic strategies have a wide-ranging impact on the medical field and are increasingly gaining more popularity and acceptability than their conventional counterparts due to their high promise in precise delivery of therapeutic formulations. It has also proved to be an emerging treatment strategy for the effective treatment of various medical conditions. This is attributed to the unique qualities of nanocarriers from physical, chemical, biological, optical, and electronic features that are of high interest in medical and engineering fields. Nanotechnology is a science, engineering, and technology that deals with particles or structures in a size range of 1–1000 nm in diameter. The growing interest in nanotechnology on therapeutics through its offspring, nanotherapeutics,
44
P H A RM A F O C U S A S I A
ISSUE 43 - 2021
is connected to the search for alternatives to some conventional drug delivery systems which are characterised by lack of selectivity, short residence time, poor bio-distribution, poor aqueous solubility, low bioavailability, and an eventual limited effectiveness. These limitations are now being resolved through nanotherapeutic strategies by conveying therapeutic agents explicitly to the site of action through nanocarriers—this helps in maximising the therapeutic efficacy of the drug while minimising its undesirable side effects. Several hard-to-cross barriers, including Blood Brain Barrier (BBB) and
difficult to reach tissues including tumours that are inaccessible tomany conventional dosage forms can now be accessed through the use of nanotherapeutic systems that include nanoparticles, nanogels, nanofibers, nanotubes, dendrimers, micelles, liposomes (Figure 1), among others. Additionally, these nanocarriers can enhance the residence time of the loaded drug by shielding it from enzymatic degradation or from rapid clearance, improving solubility of poorly water-soluble drugs, improving stability of unstable drugs rendering them suitable for administration, reducing dose dumping by release rate control, site specific/targeted drug delivery, sustained and controlled drug release, possibility of concurrent delivery of multiple drugs for combined synergetic therapy, and enhancing drug’s pharmacokinetic profile and bioavailability, all resulting to improved efficacy. The recent nanotherapeutic approaches focus on highly specific nanomedicines’ interventions for a reliable prevention, diagnosis, and treatment of diseases. Due to their high potentials and clinical success, nanomedicines have now dominated conventional dosage forms by more than 75 per cent of the total sales in the market [2]. These momentous changes are expected to continue in the formulation science and therapeutics, by enabling pharmaceutical companies to reformulate conventional medicines to more effective nanomedicines with better patience compliance and stability, longer shelf life, enhanced performance, and more cost effective.