INFORMATION TECHNOLOGY
CYBER-PHYSICAL SECURITY TOOL FOR CONTINUOUS PHARMACEUTICAL MANUFACTURING PROCESS The pharmaceutical manufacturing process and critical quality attributes (CQAs) are not only needed to control tightly but also required to be protected from any vulnerability in real-time. Currently, pharmaceutical manufacturing companies are facing enormous challenges to protect their plant from possible cyberphysical security (CPS) threats. Cyber-physical security is essential not only to protect the plant from any mechanical damages but also to assure the product quality and thereby, patient safety. The quality of the pharmaceutical products can be improved significantly by implementing advanced model predictive control (MPC) systems if an appropriate cyber-physical security defense is in place. However, much less attention has been paid to implementing a cyber-physical security system inside the pharmaceutical manufacturing plant. In this work, a systematic framework, including the methods and tools, have been developed for proactive identification and mitigation of potential cyber-physical attack risk on the continuous pharmaceutical manufacturing process. The cyber-physical security-relevant software tools such as Snap 7, Wireshark, and Tripwire have been applied to CPM. A novel software tool named CPS (Cyber-Physical Security) has been developed for cyberphysical security of continuous pharmaceutical manufacturing. It has various features for improving the security level in the pharmaceutical plant. The integrated commercially available and developed (in house) cyber-physical security tools have added an extra layer of security of continuous pharmaceutical manufacturing pilot-plant for any unexpected attacks. Ravendra Singh, Department of Chemical and Biochemical Engineering, Rutgers The State University of New Jersey
54
P H A RM A F O C U S A S I A
ISSUE 44 - 2021