FLUID POWER WORLD HANDBOOK JULY 2020

Page 76

FLUID POWER HANDBOOK

E CO URT ES

Y OF KUR I YA M A

PNEUMATIC

IY AM

A

I M AG

WWW.PNEUMATICTIPS.COM

I M AG E

OF SY E T COUR

KU

R

HOSE & TUBING SYSTEM

designers use pneumatic hose and tubing to

convey pressurized air to actuators, valves, tools and other devices. Tubing manufactured for pneumatic applications may be extruded of a single material or reinforced internally, typically with textile fibers, for higher strength. Air hose generally consists of an inner tube, one or more layers of reinforcing braided or spiral-wound fiber, and an outer protective cover. In broad terms, hose is more rugged than tubing — but it tends to cost more. Air supply and application set a baseline for product performance. Flow requirements help determine hose or tubing size. Tubing is generally specified by OD and wall thickness, while hose is specified by ID. Regardless, choosing too small an inner diameter “chokes” flow and results in pressure losses, inefficiency and excessive fluid velocity that can shorten service life. Too large a diameter, on the other hand, results in higher than necessary weight, size and cost. Also ensure that products operate below the stated maximum working pressure. Manufacturers generally rate tubing by measuring the burst pressure at 75° F, and then divide it by an appropriate safety factor (typically

74

FLUID POWER WORLD

7 • 2020

3:1 or 4:1) to determine the maximum working pressure. Keep in mind that published burst-pressure ratings are only for manufacturing test purposes, and in no way indicate that a product can safely handle pressure spikes or otherwise operate above maximum working pressure. Also note that some products handle vacuum to approximately 28 in.-Hg without collapse. Thermoplastic tubing is made from several common materials. Typical tubing materials used in pneumatic applications include: •

• •

Polyurethane tubing is strong, flexible, kink and abrasion resistant, and it withstands contact with fuels and oils. It’s commonly used in pneumatic actuation and logic systems, robotics and vacuum equipment, and semiconductor manufacturing, medical and laboratory applications. Nylon tubing is tough, light and dimensionally stable. It can be formulated for higher-pressure pneumatics, flexibility for routing in tight spaces, high flexuralfatigue resistance and low water absorption. Polyethylene tubing is often used in low-pressure pneumatics and pneumatic controls. It has wide resistance to chemicals and solvents, good flexibility and relatively low cost. HDPE tubing comes in semi-rigid versions that resist cuts and physical damage and has a higher burst pressure than polyethylene tubing. Polyvinyl chloride (PVC) tubing is light and generally more flexible than nylon and polyethylene, offers good chemical resistance and can be repeatedly sterilized. It is suitable for low-pressure medical applications and can be formulated to meet FDA specifications. It is typically clear, and thus well-suited where visible indication of flow is necessary. Polypropylene tubing can be formulated for food-contact applications, resists chemical attack and withstands UV radiation in outdoor applications.

www.fluidpowerworld.com


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Shock absorbers

5min
pages 95-97

Fluid power safety 

3min
pages 92-93

Miniature fluid power controls

7min
pages 88-91

Gauges

5min
pages 86-87

Pneumatic valves

7min
pages 82-85

Vacuum components

6min
pages 78-80

Pneumatic hose & tubing

4min
pages 76-77

FRLS

5min
pages 73-75

Air springs

2min
page 72

Air compressors

8min
pages 68-71

Pneumatic actuators

9min
pages 62-67

Pneumatics overview

1min
page 61

Hydraulic valves

6min
pages 58-59

Sensing technologies

7min
pages 55-57

Hydraulic seals

7min
pages 52-54

Repair, rebuild & manufacturing 

4min
pages 49-51

Hydraulic pumps

6min
pages 45-48

Hydraulic motors

7min
pages 42-44

Hydraulic manifolds

3min
pages 40-41

Hydraulic power units

8min
pages 36-39

Hydraulic hose couplings

5min
pages 34-35

Hydraulic hose

4min
pages 30-33

Hydraulic fluids

7min
pages 26-29

Hydraulic fittings & flanges

8min
pages 23-25

Hydraulic filtration systems

4min
pages 20-22

Hydraulic filters

5min
pages 18-19

Hydraulic cylinders

9min
pages 12-17

Bar stock

6min
pages 10-11

Hydraulic accumulators

3min
page 9

Hydraulics overview

1min
page 8

Keeping you informed

2min
page 7
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.