PhD Thesis by Yu-Hsuan Juan

Page 111

5

Urban wind energy potential for a realistic high-rise urban area This chapter has been published as a peer-reviewed article in a scientific journal:

Numerical Assessments of Wind Power Potential and Installation Arrangements in Realistic Highly Urbanized Areas Juan, Y.H., Wen, C.Y., Chen, W.Y., Yang, A.S., Renewable and Sustainable Energy Reviews, 135 (2021), 110165 Abstract: Various wind resource assessment (WRA) methods have been applied to explore the feasibility of installing wind turbines for urban wind energy harvest. Nevertheless, there are only limited computational fluid dynamics (CFD) studies available to consider WRA around high-rise buildings in realistic urbanized areas. This paper presents a numerical assessment of urban wind energy potential, specifically pursuing to overcome the limitations of former studies by addressing the following points: i) conducting a large-scale wind power estimation by employing the meticulous topography in realistic compact high-rise urban area; ii) validating CFD simulations with the on-site measurements in two seasons; iii) obtaining the annual mean wind speed, wind power density and turbulence intensity between the existing high-rise building features, including building geometry, roof geometry, presence or absence of upstream obstacles, arrangements of integrated building complex and parallel high-rise buildings; iv) investigating the local installation locations of wind turbines and the distances from rooftop sidewalls or lowest mounting heights above rooftops with high power densities and acceptable turbulence intensities for wind energy harvest. The results of this wind resource assessment suggest an effective strategy of turbine installation for implementing urban wind power potential in a realistic compact high-rise urban area..

Keywords: Wind resource assessment; urban wind power; computational fluid dynamics; building-integrated wind energy harvesting; high-rise urban area Nomenclature E0 u* u*ABL u+ UABL

Empirical constant, 30.0 Friction velocity [m/s] ABL friction velocity [m/s] Dimensionless mean streamwise wind speed Mean inlet velocity of atmospheric boundary layer [m/s]


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

References

29min
pages 151-164

Biography

1min
pages 165-166

4.5 Discussion

3min
pages 105-106

4.4.2 Impact of building corner shape

8min
pages 97-103

5.1 Introduction

13min
pages 112-116

5 Urban wind energy potential for a realistic high-rise urban area

1min
page 111

4.4.1 Impact of urban density

9min
pages 91-96

4.3.3 Computational settings

1min
page 89

4.3.2 Computational domain and grid

2min
page 88

4.2.1 Turbulence model sensitivity analysis

1min
page 85

4.2 CFD validation study

2min
pages 83-84

4 Urban wind energy potential: Impacts of urban density and layout

1min
page 79

3.5.5 Impact of wind direction

1min
page 76

4.1 Introduction

8min
pages 80-82

3.5.4 Impact of wind turbine type and orientation

3min
pages 73-75

3.5.3 Impact of corner radius

2min
pages 71-72

3 Urban wind energy potential: Impacts of building corner modifications

1min
page 53

3.5.2 Impact of chamfer length

2min
page 70

3.4.3 Grid-sensitivity analysis

1min
pages 62-63

2.7 Conclusions

3min
page 52

3.2.2 CFD validation: computational settings and results

3min
pages 58-59

3.3 Test cases

1min
page 60

2.6 Limitations of the study

1min
page 51

Discussion ...................................................................................................................................... 131

1min
page 20

buildings (d

12min
pages 42-50

Summary and Conclusions.......................................................................................................... 133

1min
page 21

Summary

2min
page 15

1.4 Thesis outline

3min
pages 23-24

2.2.2 CFD validation: computational domain and grid

1min
page 30

2.2.3 CFD validation: other computational settings

2min
pages 31-32

2 Urban wind energy potential: Impact of building arrangement and height

1min
page 25
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.