PhD Thesis by Yu-Hsuan Juan

Page 79

4

Urban wind energy potential: Impacts of urban density and layout This chapter has been published as a peer-reviewed article in a scientific journal:

Impacts of urban morphology on improving urban wind energy potential for generic high-rise building arrays Juan, Y.H., Wen, C.Y., Li, Z.T., Yang, A.S., Applied Energy 229 (2021) 117303 Abstract: Previous findings have indicated better performance attained by modified urban morphologies for wind energy utilization only in single and pair buildings, or medium-dense low-rise building arrays. Hence, the main purpose of this study is to address the research gaps to complete a fundamental understanding of the influences of urban morphology in compact high-rise urban areas on enhancing urban wind energy harvesting for sustainable urban development. A comprehensive parametric study is conducted using the computational fluid dynamics tool to analyze the impacts of urban morphologies on the wind energy potential for a 6 × 6 array of generic high-rise buildings, including (i) urban density altered from compact to sparse urban layouts, (ii) building corner shapes of sharp and rounded corners, (iii) urban layouts of in-line and staggered patterns, and (iv) wind directions of 0° and 45°. This investigation implements the three-dimensional steady Reynolds-averaged Navier-Stokes equations with the Reynolds stress model to explore the distributions of wind speed, power density, and turbulence intensity over the building array. The results indicate that decreasing urban plan area density reduces the unacceptable turbulence areas with relatively higher wind power density on the roof. Besides, round corners can produce elevated power densities up to 201% greater than sharp corners beside the building. Even under the oblique wind direction of 45°, the rounded corner still shows better wind energy potentials than the sharp corner. The in-line urban layout demonstrates more significant areas with higher power densities and low turbulence intensities than the staggered urban layout. Keywords: Urban wind energy; Urban Morphology; Compact city; High-rise building; Urban density; Aerodynamic modification. Nomenclature ABL B CFD

Atmospheric boundary layer Building length Computational fluid dynamics


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

References

29min
pages 151-164

Biography

1min
pages 165-166

4.5 Discussion

3min
pages 105-106

4.4.2 Impact of building corner shape

8min
pages 97-103

5.1 Introduction

13min
pages 112-116

5 Urban wind energy potential for a realistic high-rise urban area

1min
page 111

4.4.1 Impact of urban density

9min
pages 91-96

4.3.3 Computational settings

1min
page 89

4.3.2 Computational domain and grid

2min
page 88

4.2.1 Turbulence model sensitivity analysis

1min
page 85

4.2 CFD validation study

2min
pages 83-84

4 Urban wind energy potential: Impacts of urban density and layout

1min
page 79

3.5.5 Impact of wind direction

1min
page 76

4.1 Introduction

8min
pages 80-82

3.5.4 Impact of wind turbine type and orientation

3min
pages 73-75

3.5.3 Impact of corner radius

2min
pages 71-72

3 Urban wind energy potential: Impacts of building corner modifications

1min
page 53

3.5.2 Impact of chamfer length

2min
page 70

3.4.3 Grid-sensitivity analysis

1min
pages 62-63

2.7 Conclusions

3min
page 52

3.2.2 CFD validation: computational settings and results

3min
pages 58-59

3.3 Test cases

1min
page 60

2.6 Limitations of the study

1min
page 51

Discussion ...................................................................................................................................... 131

1min
page 20

buildings (d

12min
pages 42-50

Summary and Conclusions.......................................................................................................... 133

1min
page 21

Summary

2min
page 15

1.4 Thesis outline

3min
pages 23-24

2.2.2 CFD validation: computational domain and grid

1min
page 30

2.2.3 CFD validation: other computational settings

2min
pages 31-32

2 Urban wind energy potential: Impact of building arrangement and height

1min
page 25
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.