La
Metallurgia Italiana
International Journal of the Italian Association for Metallurgy
n. 5 maggio 2020 Organo ufficiale dell’Associazione Italiana di Metallurgia. Rivista fondata nel 1909
La Metallurgia Italiana International Journal of the Italian Association for Metallurgy Organo ufficiale dell’Associazione Italiana di Metallurgia. House organ of AIM Italian Association for Metallurgy. Rivista fondata nel 1909
Direttore responsabile/Chief editor: Mario Cusolito Direttore vicario/Deputy director: Gianangelo Camona Comitato scientifico/Editorial panel: Livio Battezzati, Christian Bernhard, Massimiliano Bestetti, Wolfgang Bleck, Franco Bonollo, Bruno Buchmayr, Enrique Mariano Castrodeza, Emanuela Cerri, Lorella Ceschini, Mario Conserva, Vladislav Deev, Augusto Di Gianfrancesco, Bernd Kleimt, Carlo Mapelli, Jean Denis Mithieux, Marco Ormellese, Massimo Pellizzari, Giorgio Poli, Pedro Dolabella Portella, Barbara Previtali, Evgeny S. Prusov, Emilio Ramous, Roberto Roberti, Dieter Senk, Du Sichen, Karl-Hermann Tacke, Stefano Trasatti Segreteria di redazione/Editorial secretary: Valeria Scarano Comitato di redazione/Editorial committee: Federica Bassani, Gianangelo Camona, Mario Cusolito, Carlo Mapelli, Federico Mazzolari, Valeria Scarano Direzione e redazione/Editorial and executive office: AIM - Via F. Turati 8 - 20121 Milano tel. 02 76 02 11 32 - fax 02 76 02 05 51 met@aimnet.it - www.aimnet.it
siderweb LA COMMUNITY DELL’ACCIAIO
Gestione editoriale e pubblicità Publisher and marketing office: siderweb spa Via Don Milani, 5 - 25020 Flero (BS) tel. 030 25 400 06 - fax 030 25 400 41 commerciale@siderweb.com - www.siderweb.com La riproduzione degli articoli e delle illustrazioni è permessa solo citando la fonte e previa autorizzazione della Direzione della rivista. Reproduction in whole or in part of articles and images is permitted only upon receipt of required permission and provided that the source is cited. Reg. Trib. Milano n. 499 del 18/9/1948. Sped. in abb. Post. - D.L.353/2003 (conv. L. 27/02/2004 n. 46) art. 1, comma 1, DCB UD siderweb spa è iscritta al Roc con il num. 26116
Editoriale / Editorial
AIM reagisce al lock-down
Ing. Mario Cusolito ............................................................................................................................ pag.04
Memorie scientifiche / Scientific papers
Metallurgia Additiva / Additive Metallurgy Microstructure based strengthening model of a biocompatible WE54 alloy reinforced by SiC
M. Cabibbo, F. F. Průša......................................................................................................... pag.08
Knock (and pre-ignition) damage on engine components: case studies
E. Balducci, Parisi, F. Boccia, M. Barichello, L. Ceschini.............................................................. pag.20
n. 5 maggio 2020
Anno 112 - ISSN 0026-0843
Detection of Non-metallic Inclusions in 12Mn Steel Continuous Casting Round Billets
X. Wang, J. Wei, S. Qiu......................................................................................................... pag.27
Study on Heat Transfer Characteristics during Solidification of 18-ton Steel Ingot with Large Ratio of Height to Diameter
Z. Yu, H. Zhang, X. Wang, X. Wu ........................................................................................... pag.37
Attualità industriale / Industry news
Il nuovo acciaio da utensile da lavorazione a caldo THERMODUR E40K SUPERCLEAN
indice
a cura di: E. Prati, A. Magistrelli ............................................................................................. pag.48
Scenari / Experts' Corner
LA METALLURGIA NEI GRANDI POEMI DELL’ANTICHITÁ
a cura di: Giuseppe G. Casarini .............................................................................................. pag.58
Atti e notizie / AIM news
Eventi AIM / AIM events ........................................................................................ pag.66 Comitati tecnici / Study groups........................................................................... pag.67
editoriale - editorial
AIM reagisce al lock-down
La situazione sanitaria dovuta alla pandemia ha colpito con gravità inaspettata tutto il mondo, compreso quello scientifico e produttivo che ruota intorno allo studio e alla fabbricazione dei metalli. L’Associazione Italiana di Metallurgia ha dovuto reagire e adat-
Mario Cusolito Direttore de La Metallurgia Italiana
tarsi alle mutevoli realtà che di giorno in giorno si delineano. Il lock-down imposto in Italia e in molti altri paesi ha segnato l’inizio di un periodo di grande incertezza: non sappiamo quando potremo ricominciare a frequentare luoghi affollati come i congressi e le riunioni, non sappiamo quando potremo ricominciare a viaggiare senza restrizioni. Tutto ciò ci impedisce, per ora, un normale rapporto con le persone che incontriamo e
“
che vorremmo incontrare. Una delle attività principali di AIM è l’organizzazione e la gestione di iniziative che hanno lo scopo di diffondere la conoscenza metallurgica. L’Associazione ha dovuto quindi modificare i pro-
Facciamo e faremo il possibile per tenere alto il livello scientifico degli articoli e l’interesse dei lettori.
pri programmi differendo gli eventi previsti a nuove date nelle
Mario Cusolito
– European Conference on Continuous Casting” – si terrà nella
quali, presumibilmente, si starà tornando verso la normalità. Il maggiore evento internazionale del prossimo futuro, l’”ECCC
medesima location di Bari dal 21 al 23 ottobre, mentre il “38° Convegno Nazionale AIM” resta, per il momento, confermato dal 16 al 18 settembre a Napoli. Il 27° Convegno Nazionale Trattamenti Termici” è stato differito al 18 e 19 novembre, mantenendo la prestigiosa location al Porto Antico di Genova. Le numerose Giornate di Studio previste in questo periodo vengono rimandate alla prima data utile, tenendo conto anche della disponibilità delle eventuali aziende ospitanti, per salvaguardare uno dei principali valori aggiunti che è quello della visita ai
La Metallurgia Italiana - maggio 2020
pagina 4
editoriale - editorial
reparti produttivi e ai laboratori. Anche l’offerta formativa didattica dei Corsi organizzati da AIM ha subito importanti modifiche: in questo caso però AIM sta seguendo nuove strade, da affiancare a quelle tradizionali. E così, il “Corso itinerante sulla macchina fusoria” sarà necessariamente ripianificato appena possibile, perché la visita alle acciaierie è parte integrante del programma, mentre il corso “Metallurgia di base propedeutico ai trattamenti termici” sarà ripensato per una fruizione online delle lezioni. Altra importante innovazione è la nuova proposta di formazione ed aggiornamento a distanza, denominata FaReTra – Fair Remote Training, che va arricchendosi costantemente di contenuti grazie all’impegno dei diversi comitati tecnici. A fare da apripista è stato il Comitato Tecnico Acciaieria con il “Corso Acciai ad Alto Carbonio”, che ha che ha ottenuto un notevole successo di pubblico in streaming. Ulteriori proposte all’interno del contenitore FaReTra sono i corsi “in pillole”, lezioni online di diversa durata per una formazione di base sui vari argomenti in attesa della didattica frontale: sarà affrontato in questo modo il corso di “Failure Analysis in pillole”, così come è già in fase di svolgimento “Siderurgia in pillole” e come presto saranno disponibili “Tecnologie Additive in pillole” e “Tecnologie Press & Sinter non tradizionali in pillole”. L’obiettivo principale del progetto FaReTra è mantenere il contatto con il proprio pubblico e non fare mancare sul mercato l’offerta in cui AIM è specializzata, oltre a poter affinare uno strumento che completi, anche ad emergenza conclusa, la formazione in presenza. La Rivista dell’Associazione Italiana di Metallurgia è fedele testimone delle attività dell’Associazione: da diversi anni ogni singolo numero della Rivista, oltre a aggiornare sulle attività di AIM, tende ad avere un filo conduttore preciso, praticamente monografico, con articoli basati su eventi quali convegni, conferenze e seminari. Lo spostamento di questi eventi ci obbliga ad una nuova pianificazione che non sempre ci permetterà numeri monografici: nonostante questo facciamo e faremo il possibile per tenere alto il livello scientifico degli articoli e l’interesse dei lettori. Ci auguriamo quindi di avervi con noi, lettori sempre più attenti, e vi auguriamo di superare al più presto questa emergenza per tornare ad una vita lavorativa e affettiva priva di tutti gli attuali condizionamenti.
The health situation due to the pandemic has hit the whole world with unexpected severity, including the scientific and productive situation that revolves around the study and manufacture
La Metallurgia Italiana - May 2020
pagina 5
editoriale - editorial
of metals. The Italian Metallurgy Association had to react and adapt to the changing realities that are emerging day by day. The lock-down imposed in Italy and in many other countries marked the beginning of a period of great uncertainty: we don't know when we will be able to start again to attend crowded places like congresses and meetings, we don't know when we will be able to start travelling without restrictions. All this prevents us, at the moment, from having a normal relationship with the people we meet and whom we would like to meet. One of the main activities of AIM is the organization and management of initiatives aimed at spreading metallurgical knowledge. The Association has therefore had to change its programs by postponing the planned events to new dates when, presumably, the situation will be back to normal. The biggest international event of the near future, the "ECCC - European Conference on Continuous Casting" - will be held in the same location in Bari from October 21st to 23rd, while the "38th AIM National Conference” remains, for the moment, confirmed from September 16th to 18th in Naples. The “27th National Conference on Heat Treatment" has been postponed to November 18th and 19th, maintaining the prestigious location at the Porto Antico of Genoa. The numerous Study Days planned in this period are postponed to the first useful date, also taking into account the availability of possible host companies, with the aim of safeguarding one of the main added value that is the visit to the production departments and laboratories. The didactic training offer of the Courses organized by AIM has undergone important changes too: in this case, however, AIM is following new paths, to be added to the traditional ones. And so, the "Travelling course on the melting machine" will necessarily be re-planned as soon as possible, because the visit to the steelworks is an integral part of the program, while the course "Basic Metallurgy preparatory to heat treatments" will be rethought for an online use of the lessons. Another important innovation is the new proposal for distance training and updating, called FaReTra - Fair Remote Training, which is being constantly enriched with content thanks to the commitment of the various technical committees. The Steelmaking Technical Committee has been the forerunner with the “High Carbon Steels Course”, which has achieved considerable success with the streaming audience. Further proposals within the FaReTra container are the "in pills" courses, online lessons of different duration for a basic training on the various topics
La Metallurgia Italiana - maggio 2020
pagina 6
editoriale - editorial
waiting for frontal teaching: the "Failure Analysis in Pills" course will be dealt with in this way, just as "Steelmaking in Pills" is already in progress and "Additive Technologies in Pills" and "Non-traditional Press & Sinter Technologies in Pills" will soon be available. The main objective of the FaReTra project is to maintain contact with AIM audience and not to miss on the market the offer in which AIM is specialized, in addition to being able to refine a tool that will complete training in presence, even after the emergency finishes. The “International Journal of the Italian Association for Metallurgy� is a faithful witness of the Association's activities: for several years now, every single issue of the magazine, besides updating on AIM's activities, tends to have a precise, practically monographic thread, with articles based on events such as conventions, conferences and seminars. The displacement of these events obliges us to a new planning that will not always allow us monographic issues: despite this, we do and will do our best to keep the scientific level of the articles and the interest of the readers high. We therefore hope to have you with us, increasingly attentive readers, and we wish you to overcome this emergency as soon as possible in order to return to a working and emotional life devoid of all current conditioning.
La Metallurgia Italiana - May 2020
pagina 7
Memorie scientifiche - Miscellanea
Microstructure based strengthening model of a biocompatible WE54 alloy reinforced by SiC M. Cabibbo, F. Průša A large number of magnesium alloys and magnesium-based composites are nowadays used as biocompatible light
metallic materials. Example of their applications include bone-tissue screws, cardiac valves, orthodontic screws and
components. In this sense, the biocompatibility, durability, and corrosion resistance and blood compatibility are key factors for the full availability of magnesium based alloys in the bioengineering field. On the other hand, minimal necessary mechanical properties necessary for their potential application in such a filed were investigated in the last three
decades. With this respect, not only magnesium based alloys, but also magnesium composite alloys were tested for their biocompatibility. Oxides such TiO 2, MgO, ZnO, ZrO 2, TiB 2, Al 2O 3, and also SiC showed sufficient biocompatibility
and in addition, composite magnesium alloys added with such oxides or SiC are known to possess higher mechanical
properties compared to their magnesium alloy counterparts. Among the different available metallurgical technologies to produce magnesium alloys, the powder metallurgy (PM) is surely one of the most promising one. With this regard,
squeeze casting is one of the most reliable and cost-effective PM technique of production of magnesium based alloys and composites.
In the present work, the microstructure and mechanical properties of WE54+15vol.%SiC under various compression temperature conditions, up to 300°C, were investigated by transmission electron microscopy (TEM). Microstructure inspections revealed the formation of stable cuboid secondary phase particles, and lamellae and irregular-shaped in-
termetallic phases. A microstructure-based strengthening model was proposed and compared to the experimentally obtained compression stress carried out at temperatures ranging 50-to-300°C. The most effective strengthening term
was found to be the one coming from the refined grain structure. A further important strengthening contribution was constituted by the secondary phase particle precipitation within the Mg-matrix.
KEYWORDS: BIOCOMPATIBLE MG-BASED ALLOYS; COMPRESSION; STRENGTHENING MODEL; TEM. Introduction Mg-RE (WE) alloys have driven much interest as biomedical applications due to their outstanding high strength at both room temperature and high temperatures, excellent precipitation hardening and good biocompatibility [1-3]. With this respect, commercial alloys such the WE43 and WE54 have been widely used in various structural and biomedical applications due to their good balance on performance and cost. This interest favored a number of investigations
Marcello Cabibbo
DIISM / Università Politecnica delle Marche, Ancona, Italy
Filip Průša
University of Chemistry and Technology, Prague, Department of
Metals and Corrosion Engineering, Technická 5, 166 28 Prague 6, Czech Republic
on the mechanical properties [4-6], deformation behavior [7,8], precipitation sequence [9,10] of the WE series alloys. Mg-Gd-based alloys with some Y or Nd addition exhibited
La Metallurgia Italiana - maggio 2020
pagina 8
Scientific papers - Miscellaneous remarkable aging-hardening response and good ductility
ly reduced as compared to unreinforced alloys. Bio-com-
even after T6 treatment [11]. With this respect, Wang et al.
posites have been developed and used in tissue enginee-
[4] reported that over 2 wt% Gd additions significantly im-
ring, drug delivery, dentistry and bone implants because of
proved the ductility of the as-cast Mg-5Y-3Nd-0.6Zr alloy.
their high performance. However, their low stiffness, poor
Many researchers reported formation of particle, namely
mechanical properties, and inflammation issues during the
cuboid-shaped phases Mg24RE5 and Mg5RE ([12] to cite but
implantation period have limited their use in the biomedi-
one).
cal field [13].
The biodegradable metallic materials can be divided into
The composite magnesium alloys usually contain at least
three categories, such as pure metals, alloys, and composi-
two components, which are known as matrix and reinfor-
tes. Commercially available AZ91D Mg alloy is considered
cement. All the components of the composite must be
the most suitable bio-engineering magnesium alloy, and it
biocompatible and nontoxic in any physiological environ-
has been so far deeply investigated in vivo and vitro envi-
ment. The composite material allows the combination of
ronments. On the other hand, composite materials must
matrix and reinforcement properties such as sufficiently
possess the highest level of mechanical strength, corro-
high mechanical properties (tensile strength, elastic mo-
sion resistance and biocompatibility to be qualified as a
dulus, yield strength, compression strength), corrosion re-
biomaterial implant.
sistance and biocompatibility. Thence, selection of matrix
Ceramic-based implants were also developed due to their
component and reinforcement component are very critical
better mechanical performance, lack of an inflammation
to obtain the desired properties [23,24].
reaction, and optimum degradation rate. However, bio-ab-
In the present work a WE54 alloy added with 15%vol.SiC
sorbable ceramics also have fast degradation rates com-
was tested by compression at high temperatures. Micro-
pared to non-absorbable ceramics. Mg-based bio-alloys
structure evolution was inspected by electron microscopy
are considered to absorb within the human body at an ap-
(TEM). The work presents a microstructure based stren-
propriate resorption rate, but they also have a problem of
gthening model that was compared to the experimental
a fast degradation rate during tissue remodelling, which li-
compression tests carried out at temperatures ranging
mits their applications in clinical fields [13]. For this reason,
50-to-300째C.
Mg-based alloys are still considered to be a good choice in the fields of tissue engineering, orthopaedics and cardio-
Experimental procedure
vascular stents because of their suitable mechanical pro-
The material used in this study was a WE54 magnesium ma-
perties, reasonable biodegradation and lower toxicity [13].
trix composite. Commercial WE54 (Mg-5wt.%Y-4wt.%RE,
Researchers have developed Mg-based bio micro-com-
mainly Nd) alloy was reinforced by 15vol.% silicon carbide
posites and bio nano-composites to achieve the desired
particles. Composite was prepared by squeeze casting te-
mechanical properties, optimized corrosion resistance,
chnique. In particular, a two-step squeeze casting process
minimum cytotoxicity, and high biocompatibility [14-21].
was followed to fabricate the WE54-SiC composite. This
Numerous opportunities and challenges still exist in deve-
was constituted by a first stage of very low pressure for in-
loping Mg-based biodegradable composites and alloys for
filtration applied to the matrix melt, followed by melting
biomedical applications. In this sense, Mg-RE alloys (such
and solidification at quite high squeezing pressure. The SiC
as the WE series) provide better mechanical properties and
particles were embedded in the alloy through preheating
corrosion resistance at both room and high temperatures
in a furnace at 400-450째C, before further maintenance at
[22].
900째C for 2 h. During squeeze casting, the applied pressu-
Considerable improvement of the mechanical properties
re and time for infiltration were 0.4-to-0.5 MPa and 15-25
can also be achieved by reinforcement with ceramic par-
s, respectively. Then, the WE54-SiC composite alloy was
ticles or fibres. Metal matrix composites (MMCs) provide
melted in an electric furnace with a graphite crucible using
a substantial increase in strength and stiffness as well as
a specific flux of inert gas protection (namely argon). The
creep resistance. The ductility of composites is significant-
casting temperature was fixed at 750째C. For all experimen-
La Metallurgia Italiana - May 2020
pagina 9
Memorie scientifiche - Miscellanea tal runs, the squeezing pressure after infiltration and the
lected-area diffraction pattern (SAEDP).
dwelling of the squeezing pressure were 100 MPa and 90
All the here reported mean values and statistical evalua-
s, respectively.
tions come from at least 80 individual measurements for
Compression tests were carried out at temperatures
SiC and twin spacing. The mean values of secondary pha-
between room temperature and 300°C using an INSTRON
se particles and grain size were evaluated by stereological
testing machine, according to ASTM E9. Cylindrical speci-
methods (ASTM E112) and were obtained from a series of a
mens of 8mm in diameter and 12 mm long were deformed
minimum of 150 individual measurement per each experi-
at an initial strain rate of 2.8·10-4 s-1.
mental condition. Mean secondary phase particle diameter
The microstructure was inspected by optical microscopy
and SiC geometrical dimensions (length, size and thick-
(OM) and by transmission electron microscopy (TEM). Thin
ness) were evaluated by stereological means. In particu-
foils for TEM were mechanically thinned down to ~100 µm,
lar, particle thickness was measured directly on TEM by an
punched, and then dimpled to a thickness of ~20 µm at the
in-line stereo-features measurement facility.
center of the 3-mm disk. This was furthermore thinned to electron transparency using a precision ion polishing sy-
Results and discussion
stem (GatanTM PIPS) with an initial tilt angle of 8°, followed
Microstructure and mechanical properties
by a running angle of 3°, at voltage of 4.5 V and cooled by
The microstructure of the composite is reported in Figure
liquid nitrogen. A PhilipsTM CM20® working at 200kV and
1. The SiC particles are not uniformly distributed in the ma-
equipped with a double tilt specimen holder was used.
trix as they mostly tend to randomly cluster.
Detected secondary phase particles were identified by se-
Fig.1 - Microstructure of the as-produced, undeformed WE54-15%vol.SiC composite.
The compressive true stress-strain curves at strain rate of
grain size, Dg. It appeared that a linear relationship betwe-
2.78 x 10−4s−1 and different temperatures are shown in the
en the alloy strengthening and the grain size evolution with
Figure 2 inset. Figure 2 also shows the yield stress obtained
compression temperature was identified.
experimentally as a function of the measured alloy mean
La Metallurgia Italiana - maggio 2020
pagina 10
Scientific papers - Miscellaneous
Fig.2 - Yield strength, σ0.2 vs. mean grain size, Dg. Inset reports the true stress-strain curves at different compression test temperatures (room-temperature, 50, 100, 150, 200, 250, and 300°C) [25]. This was as: σ0.2 = 272 – 6.1·Dg, and thence in the present
started to decrease with the temperature. In other words,
case, a constant strengthening ratio reduction of ~6 MPa
the compression strength of the WE54 SiC reinforced al-
per micron of grain size increase could be established. The
loy did not changed from room temperature to 200°C. This
temperature dependences of the characteristic stresses,
ultimately means that, according to the 90/385/EEC (active
the yield stress σ0.2 and the ultimate stress (UTS) σU, are
implantable medical devices directive), the compression
shown in Figure 3. It appears a clear influence of the test
behaviour of the present alloy is stable for the human body
temperature on the resulting alloy strain hardening, at a test
temperatures and for the possible local mechanical pro-
temperature beyond 200°C, as the compressive flow stress
cesses of working heating and cooling prior implantation.
Fig.3 - Temperature dependences of the alloy strength, UTS (σmax), and YS (σ0.2), from room temperature (17°C) to the maximum test temperature of 300°C [25].
La Metallurgia Italiana - May 2020
pagina 11
Memorie scientifiche - Miscellanea This interesting alloy mechanical response was accounted
the present WE54-SiC alloy.
from a microstructure viewpoint by a systematic micro-
The microstructure inspections revealed the twin forma-
structure inspection carried out by electron microscopy
tion within the magnesium matrix. These were of nano-
(TEM).
metric scale and were found to be quite narrow and lying
Figure 4 reports representative TEM micrographs of the al-
parallel to each other (Figure 5). Anyhow, nano-twins were
loy microstructure at room temperature (Figure 4a), after
detected only at testing temperature above 200°C. The im-
compression test at 50°C (Figure 4b), 150° (Figure 4c), and
portant role of twinning in the deformation of hexagonal
300°C (Figure 4d). It appeared that the microstructure re-
closed-packed (hcp) lattice alloys is well known. On the
mained stable up to 200°C, being quite similar to the one
other hand, dislocation density plays important role in har-
observed at room temperature (that is in the as-produced
dening mechanism in composite. With addition of the rein-
condition). Yet, the microstructure after the compression
forcing phase, the geometrically necessary dislocations
tests at 300°C clearly revealed a significant grain coarse-
are generated to accommodate the mismatch of plastic
ning and secondary phase deterioration, that is coarsening
deformation in the matrix. New dislocations arise directly
of the reinforcing secondary phase particles. In addition,
in the production process due to the solidification process
at 300°C compression test, most of the coarse secondary
during preparation of the composite. A higher dislocation
phase particles tend to align almost continuously at grain
density in the composite material induces a higher level
boundaries. This indeed correspond to a weakening mor-
of internal stress. The detected higher matrix dislocation
phology for the intergranular particles that can led to me-
density as well as the reinforcement/matrix interfaces can
chanical failure by grain decohesion. This microstructure
provide high diffusivity paths in the composite alloy. Signi-
degradation with compression temperature is ultimately
ficant amount of dislocations were generated during com-
believed to drive the corresponding mechanical failure of
pressive deformation.
a)
b)
c)
d)
Fig.4 - Representative TEM micrographs showing the microstructure at room temperature (as-producued condition), a); after compression test at 50°C, b); 150°C, c); and at 300°C, d). Rectangular shaped secondary phase particles are Mg24Y5 hardening phases, according to [26].
La Metallurgia Italiana - maggio 2020
pagina 12
Scientific papers - Miscellaneous Based on the quantitative evaluation of all the strengthening
formation, secondary phase formation and eventual coar-
features appeared in the alloy microstructure a strengthe-
sening, composite model of strengthening given by the
ning model was proposed. The major microstructure fea-
SiC particles. This microstructure-based alloy strengthe-
tures contributing to the alloy strength are: grain-structure
ning model is reported in the following.
through Hall-Petch mechanism of strengthening, twinning a)
b)
c)
Fig.5 - Representative TEM micrographs showing the absence of nanotwins after compression at 100°C, a), the formation of nano-twins after compression test at 200°C, b), and after compression test at 300°C, c).
Microstructure-base alloy strengthening model
Hall–Petch relationship, which relates the alloy stress, ∆σHP,
a. Grain size strength (Hall-Petch)
to the mean grain size, Dg, by Eq. (1), [27]:
The strengthening contribution given by the grained structure of the magnesium matrix is expressed by the
(1)
where KHP = 0.28 MPa·m1/2 is the Hall-Petch constant [27].
med sample, and ∆σHP = 135 ± 15 MPa, ∆σHP = 110 ± 10 MPa,
sion test temperature as the mean grain size increased to
respectively. That is, a drastic reduction of the alloy stren-
This contribution varied significantly with the compres-
∆σHP = 50 ± 10 MPa, after compression at 50, 150, and 300°C,
one-order of magnitude at the maximum test temperature
gthening contribution, which more than halved, occurred
of 300°C. In fact, the mean grain size varied from the mini-
after compression at 300°C, respect to the strengthening
mum value obtained at the undeformed experimental con-
contribution yield by the grained structure after compres-
dition (as-prepared), where Dg = 2.8 ± 0.6 µm, up to Dg = 4.3
sion at 150°C.
at 50, 150, and 300°C, respectively. These measured mean
b. Twinning
grain sizes corresponded to a Hall-Petch grain strengthe-
Twin boundaries, σT, was calculated by a Hall-Petch type
± 0.7 µm, Dg = 6.9 ± 0.7 µm, Dg = 33 ± 1 µm, after compression
ning contribution of ∆σHP = 165 ± 15 MPa, for the undefor-
relationship as follows, Eq. (2) [28]:
(2)
La Metallurgia Italiana - May 2020
pagina 13
Memorie scientifiche - Miscellanea Where VvTwins is the measured volume fraction of the twins,
essentially irrelevant.
average twin boundary spacing. The detection of twin for-
c. Secondary phase particles
mation during compression at the different temperatures
The strength given by the secondary phase particles is mo-
was carried out by tilting the crystal as to be oriented with
delled by the Orowan mechanism. That is, the precipitation
respect to the beam direction to show {10-12} crystallo-
hardening is an effective strengthening factor not only at
graphic plane. This to highlight the twin boundary edge
room temperature but also at higher temperatures, even
lying direction <10-11> | | {10-12}.
although the secondary phase particles started to coarsen
Twins were detected essentially after compression at
with compressive temperature. As long as these particles
200°C, and not for lower testing temperatures nor in the
are within 50-80 nm in equivalent diameter these act as im-
as-prepared condition. Thus, this contribution only holds
penetrable particles for the sliding dislocations. Thence,
for the conditions of compression at 300°C (Figure 5).
gliding dislocations bows out between consecutive parti-
Anyhow, the volume fractions of the detected twins were
cles bypassing and leaving a loop around them to proceed
quite low, being VvTwins = 2-3 vol.%. The mean twin spacing
in their sliding motion. Thence, following the pioneering
was measured as λTB = 22-to-30 nm. Thus, the twin stren-
works by Scattergood and Bacon, this strengthening me-
gthening contribution accounted for a quite low value ran-
chanism was here modelled using Eq. (3) [29,30]:
kTB = 35 MPa·µm1/2 is a Hall-Petch type constant, λTB is the
ging ∆σT = 4-7 MPa. This make the twinning contribution
(3)
where B = 0.6 for screw dislocations and 0.7 for edge dislocations, T’ = 6.5 is the Taylor factor for Mg, E = 44.4 GPa is the magnesium Young’s modulus, b is the Burgers vec-
± 5 MPa, for the undeformed condition, and to ∆σOrowan = 60 ± 5 MPa, ∆σOrowan = 45 ± 5 MPa, and ∆σOrowan = 25 ± 5 MPa, after compression at 50, 150, and 300°C, respectively.
tor that for Mg is 0.32 nm, ѵ = 0.27 is the Poisson’s ratio, λ represents the average interparticle spacing, which based
d. SiC particle composite strength contribution
on ASTM E112 stereology methods λ = [1.25/(d/NV)-πd/4],
According to the shear-lag model proposed by Nardone
with NV the particle volume density and d the mean particle
and Prewo in [31], the composite particles do contribute
equivalent diameter [29,30]. This latter was quantitatively
to alloy reinforcement carrying a fraction of the load from
evaluated by TEM inspections. It resulted that the particle
the matrix. This alloy strengthening contribution strongly
mean diameter, d, increased significantly form the as-pro-
depends on the shape and morphology of the particles; it
duced, undeformed condition, where d = 50 ± 5 nm, to d =
specifically depends on the particle aspect ratio [32]. Thus,
90 ± 5 nm, after compression at 50°C, d = 125 ± 5 nm, after
the proposed relationship for a composite strengthened
compression at 150°C, and d = 240 ± 20 nm, after the maxi-
alloy is (Eq. (4a)), [31]:
mum test compression temperature of 300°C. This strengthening contribution accounted for ∆σOrowan = 70
(4a)
where σ0 is the unreinforced matrix yield stress, VvSiC the
particle aspect ratio. These were directly measured on
SiC particle volume fraction, L the particle size facing the
TEM. The SiC volume fraction, VvSiC, was determined using
load direction, t the mean particle thickness, A = L/t the
areal analysis (Aa) stereology method (ASTM E-112). For
La Metallurgia Italiana - maggio 2020
pagina 14
Scientific papers - Miscellaneous equiaxed particles, or alternatively particles with 2D-shape
to Eq. (4b):
close to circle, as in the present case, the Eq. (4a) reduces
(4b)
A further strengthening mechanism acting in the composi-
size, and on the effective temperature change. Upon hi-
te WE54 alloy refers to the different thermal expansion co-
gh-temperature compression, the relatively large thermal
efficients (CTE) between the SiC particles and the magne-
expansion coefficient between the matrix and the SiC parti-
sium matrix. This induces a dislocation density increment
cles creates a misfit strain at the SiC-Mg interface. Thermal
with the applied stress, yielding an additional strengthe-
stress can be partially released by the dislocation genera-
ning contribution to the alloy. The amount of the thermal
tion and accumulation in the surroundings of the reinfor-
stress induced by the presence of the reinforcement de-
cement surfaces. Thus, according to [33-35] the induced
pends upon the particle volume fraction, morphology, and
extra dislocation density can be calculated as Eq. (5a):
(5a) where C = 12 for equiaxed particles, ε = ∆α·∆T is the misfit
SiC particles. The thermally generated dislocation density
strain, ∆T is the temperature variation, ∆α = 21·10-6 K-1 is the
yields a strengthening contribution of (Eq. (5b)), [33,35]:
difference between matrix and SiC thermal expansion, VvSiC the particle volume fraction, and t’ the minimum size of the (5b) with α1 = 0.35, and G = 17480 MPa is the shear modulus of
to the metallic magnesium matrix induces geometrically
Mg.
necessary dislocations resulting in an additional strengthe-
Since the average residual stress generated by the thermal
ning contribution to the alloy. The resulting matrix-to-par-
expansion is of tension nature, it is actually a negative con-
ticle misfit depends on the reinforcement size and mor-
tribution to the strengthening to the magnesium composi-
phology [37]. The density of the geometrical necessary
te alloy [36].
dislocations is given by Eq. (6a) [35,36]:
The different nature of the ceramic SiC particles respect (6a) where εp = 0.28 is the plastic strain. The corresponding
strengthening contribution is thus (Eq. (6b)): (6b)
According to the statistical evaluations of all the meaningful
SiC strengthening contribution was evaluated as, Eq. (7):
microstructure features appearing in the Eqs. (4)-to-(6), the
(7)
La Metallurgia Italiana - May 2020
pagina 15
Memorie scientifiche - Miscellanea Thus, ∆σSiC = 57 ± 3 MPa, for the undeformed condition,
Hall-Petch) and the one generated by the existing secon-
∆σSiC = 63 ± 3 MPa, ∆σSiC = 115 ± 5 MPa, ∆σSiC = 25 ± 5 MPa,
dary phase particles (primarily the Mg24Y5 particles) steadily
after compression at 50, 150, and 300°C, respectively. That
reduce with compression temperature. On the other hand,
is, the SiC strengthening contribution tended to increase
the contribution yield by the presence of SiC reinforcing
steadily with the compression temperature up to 150°C, to
coarser particles slightly increased from compression
drastically reduce, and then degrading, at 300°C.
temperatures within 150°C, than eventually it drastically reduced from 150 to 300°C. Anyhow, the general trend
e. Strengthening term combination
with compression temperature of the overall strengthe-
Before considering the proper combination of all the here
ning contribution, as calculated by combining the single
detected strengthening terms, the individual impact on
contributions by using Eq. (8), reported in the following,
the composite alloy strengthening at the different com-
showed an almost continuous reduction up to 3-fold less
pression temperatures was addressed. To this purpose,
from room temperature to 300°C. Figure 6 allowed identi-
Figure 6 shows the trend with compression temperatu-
fying the ∆σSiC as the actual distinctive strengthening contri-
re of ∆σHP, ∆σOrowan, ∆σSiC. It resulted that the strengthening
bution with compression temperature.
contribution coming from the matrix (grain size, through
Fig.6 - Plot of the strengthening terms as calculated by Eqs. (1)-to-(6b) for ∆σHP, ∆σOrowan, ∆σSiC vs. compression temperature. The variation of σmodel as obtained by Eq.(8) with compression temperature is also reported for a direct comparison.
As for the overall combination of the individual stren-
strengthening ability, which act unevenly throughout the
gthening contribution, according to Lilholt [38] the stress
matrix, are most suitably combined as the square root of
contributions acting uniformly throughout the matrix are
the sum of the squares [39,40].
superimposed linearly, whereas mechanisms of similar
Thence the following model is here proposed, Eq. (8):
(8)
∆σSiC being the strengthening contribution coming from
The obtained agreement between the modelled yield
the Sic particles as determined by linearly adding Eqs.
strength and the experimentally measured compression
(4)-to-(6d).
strengths was of some 20% between the model and the
Table 1 reports the obtained results by applying the Eq. (8)
measured values at room temperature. The difference re-
to the as-prepared alloy, and the compression tested con-
duced to some 10-15% for compression at 50 and 150°C,
ditions at 50, 150, and 300°C.
but accounted of 30% at the maximum test temperature of
La Metallurgia Italiana - maggio 2020
pagina 16
Scientific papers - Miscellaneous 300°C. In this latter case, the model overestimation is likely
degradation occurred at 300°C came from the significant
to be attributed to a further Orowan-like strengthening
reduction of the secondary phase strengthening contribu-
contribution that was not here taken into consideration
tion, and to a lower extent from the SiC strength contribu-
due to a lack of experimental information. A further rea-
tion. The comparison between the values here obtained
son could be due to observed alloy mechanical degrada-
for the WE54-SiC composite and the ones obtained for a
tion occurred at compression temperature of 300°C, whi-
WE54 compressed for temperatures ranging 50-to-300°C
ch was due to an excess of grain size coarsening. This, in
[41] showed a significant strengthening due to the presen-
turns, resulted in a strength reduction of one-third respect
ce of SiC for test temperature up to 200°C. The mechanical
to the value obtained for the undeformed condition. A se-
degradation observed at 300°C were also observed in [41]
cond microstructure factor affecting the alloy mechanical
for a WE54 SiC-unreinforced alloy.
Tab.1 - Alloy strength as obtained by applying Eq. (8) to the as-prepared alloy, and the compression tested conditions from room-temperature to 300°C. Values coming from a WE54 alloy published by Beladi and Barnett [41] are also reported for comparison.
(1)
YS, σ0.2:
undeformed
compression at 50°C
compression at 100°C
compression at 150°C
compression at 200°C
compression at 300°C
σexp, MPa
250 ± 5
245 ± 5
235 ± 5
230 ± 5
230 ± 5
70 ± 5
σmodel, MPa
305 ± 15
265 ± 15
-
270 ± 20
-(1)
100 ± 20
σWE54, MPa [41]
220
-
205
-
180
100
: The strengthening obtained for compression at 200°C are not reported here as their evaluation was jeopardized by an excess of
experimental data scatter.
Conclusions
It also resulted that at 300°C grain size drastically increased
WE54 Mg-RE (RE=Y, Nd, Gd, Dy) alloy based composite
up to one-order of magnitude respect to the undeformed
was prepared by squeeze casting. Compression tests were
condition.
carried out in the temperature range from room tempera-
A mixed combination of the different strengthening terms
ture up to 300°C. The stress–strain curves showed a high
was used to meet the yield stress obtained mechanically.
degree of work hardening at the lower temperatures. The
Specifically, a linear sum of the evenly distributed stren-
most important contributions to the alloy stress were gi-
gthening terms in the matrix was quadratically combined
ven by the matrix small grain size and by the precipitation
to the contributions given by the presence of the SiC par-
hardening, prior of excessive coarsening upon testing at
ticles: σ0+((∆σHP+∆σT+∆σOrowan)2+∆σSiC2)0.5. This microstructu-
temperatures beyond 200°C. The reinforcing phase contri-
re-based model was able to describe the microstructure
butes to strengthening mainly through an increased dislo-
factors contributing to the alloy strength at the different
cation density, i.e. by thermal and geometrical mismatch.
testing temperatures.
La Metallurgia Italiana - May 2020
pagina 17
Memorie scientifiche - Miscellanea ACKNOWLEDGEMENTS
Author wish to thank Prof. Zuzanka TrojanovĂĄ for the fruitful discussion.
REFERENCES [1]
C.H. Ye, Y.F. Zheng, S.Q. Wang, T.F. Xi, Y.D. Li, In vitro corrosion and biocompatibility study of phytic acid modified WE43 magnesium alloy, Appl. Surf. Sci. 2012;258:3420-3427.
[2]
F. Klocke, M. Schwade, A. Klink, A. Kopp, EDM machining capabilities of magnesium (Mg) alloy WE43 for medical applications, Procedia Eng. 2011;19:190-195.
[3]
Y. Liu, S. Zheng, N. Li, H. Guo, Y. Zheng, J. Peng, Study on the in vitro degradation behavior of pure Mg and WE43 in human bile for 60 days for future usage in biliary, Mater. Lett. 2016;179:100-103.
[4]
L.D. Wang, C.Y. Xing, X.L. Hou, Y.M. Wu, J.F. Sun, L.M. Wang, Microstructures and mechanical properties of as-cast Mg-5Y-3NdZr-xGd (x = 0, 2 and 4 wt.%) alloys, Mater. Sci. Eng. A 2010;527:1891-1895.
[5]
Y.H. Kang, H. Yan, R.S. Chen, Effects of heat treatment on the precipitates and mechanical properties of sand-cast Mg-4Y-2.3Nd1Gd-0.6Zr magnesium alloy, Mater. Sci. Eng. A 2015;645:361-368.
[6]
Y.H. Kang, X.X. Wang, N. Zhang, H. Yan, R.S. Chen, Effect of pre-deformation on microstructure and mechanical properties of WE43 magnesium alloy, Mater. Sci. Eng. A 2017;689:435-445.
[7]
S.M. Zhu, J.F. Nie, Serrated flow and tensile properties of a Mg-Y-Nd alloy, Scripta Mater. 2004;50:51-55.
[8]
N. Kumar, N. Dendge, R. Banerjee, R. Mishra, Effect of microstructure on the uniaxial tensile deformation behavior of Mg-4Y-3RE alloy, Mater. Sci. Eng. A 2014;590:116-131.
[9]
J.F. Nie, B.C. Muddle, Characterisation of strengthening precipitate phases in a Mg-Y-Nd alloy, Acta Mater. 2000;48:1691-1703.
[10]
C. Antion, P. Donnadieu, F. Perrard, A. Deschamps, C. Tassin, A. Pisch, Hardening precipitation in a Mg-4Y-3RE alloy, Acta Mater. 2003;51:5335-5348.
[11]
Q. Liu, X. Ding, Y. Liu, X. Wei, Analysis on micro-structure and mechanical properties of Mg-Gd-YNd-Zr alloy and its reinforcement mechanism, J. All. Comp.d 2017;690:961-965.
[12]
S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, W.J. Ding, Microstructure and strengthening mechanism of high strength Mg10Gd-2Y-0.5Zr alloy, J. All. Compd. 2007;427:316-323.
[13]
M. Prakasam, J. Locs, K. Salma-Ancane, D. Loca, A. Largeteau, L. Berzina-Cimdina, Biodegradable materials and metallic implantsda review, J. Funct. Biomater. 2017;8:44-49.
[14]
S. Agarwal, J. Curtin, B. Duffy, S. Jaiswal, Biodegradable magnesium alloys for orthopaedic applications: a review on corrosion, biocompatibility and surface modifications, Mater. Sci. Eng. C 2016;68:948-963.
[15]
M. Pogorielov, E. Husak, A. Solodivnik, S. Zhdanov, Magnesium-based biodegradable alloys: degradation, application, and alloying elements, Interv. Med. Appl. Sci. 2017;9:27-38.
[16]
J. Chen, L. Tan, X. Yu, I.P. Etim, M. Ibrahim, K. Yang, Mechanical properties of magnesium alloys for medical application: a review, J. Mech. Behav. Biomed. Mater. 2018;87:68-79.
[17]
B.J.C. Luthringer, F. Feyerabend, R. Willumeit-Râ&#x201A;Źomer, Magnesium-based implants: a mini-review, Magnes. Res. 2014;27:142154.
[18]
N. Li, Y. Zheng, Novel magnesium alloys developed for biomedical application: a review, J. Mater. Sci. Technol. 2013;29:489-502.
[19]
L. Tan, J. Dong, J. Chen, K. Yang, Development of magnesium alloys for biomedical applications: structure, process to property relationship, Mater. Technol. 2017;1:1-9.
[20]
M. Peron, J. Torgersen, F. Berto, Mg and its alloys for biomedical applications: exploring corrosion and its interplay with mecha-
La Metallurgia Italiana - maggio 2020
pagina 18
Scientific papers - Miscellaneous nical failure, Metals (Basel) 2017;7:252-261. [21]
A. Atrens, M. Liu, N.I. Zainal Abidin, Corrosion mechanism applicable to biodegradable magnesium implants, Mater. Sci. Eng. B 2011;176:1609-1636.
[22]
S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, W.J. Ding, Precipitation in a Mge10Gde3Ye0.4Zr (wt.%) alloy during isothermal ageing at 250°C, J. All. Compd. 2006;421:309-313.
[23]
F. Feyerabend, J. Fischer, J. Holtz, F. Witte, R. Willumeit, H. Drücker, C. Vogt, N. Hort, Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines, Acta Biomater. 2010;6:1834-1842.
[24]
X. Zhang, G. Yuan, L. Mao, J. Niu, P. Fu, W. Ding, Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviors of a Mg-Nd-Zn-Zr alloy, J. Mech. Behav. Biomed. Mater. 2012;7:77-86.
[25]
Z. Száraz, Z. Trojanová, M. Cabibbo, E. Evangelista, Strengthening in a WE54 magnesium alloy containing SiC particles, Mater. Sci. Eng., A 2007;426:225-229.
[26]
A.Barylski, M. Kupka, K. Aniołek, J. Rak,, The effect of precipitation hardening on the structure and mechanical and tribological properties of magnesium alloy WE54, Vacuum 2017;139:77-86.
[27]
N. Hansen, Hall–Petch relation and boundary strengthening, Scripta Mater. 2004; 51:801-806.
[28]
M.A. Meyers, O. Voehringer, V.A. Lubarda, The onset of twinning in metals: a constitutive description, Acta Mater. 49 (2001) 40254039.
[29]
R.O. Scattergood, D. Bacon, The Orowan mechanism in anisotropic crystals, Philos. Mag. A 1975;31:79-198.
[30]
S. Queyreau, G. Monnet, B. Devincre, Orowan strengthening and forest hardening superposition examinedby dislocation dynamics simulations, Acta Mater. 2010; 58:5586-5595.
[31]
V.C. Nardone and K.M. Prewo, On the strength of discontinuous silicon carbide reinforced aluminium composites, Scripta Metall. 1986;20:43-48.
[32]
M. Mabuchi and K. Higashi, Strengthening mechanisms of Mg-Si alloys, Acta Mater. 1996;11:4611-4618.
[33]
R.J. Arsenault, L. Wang and C.R. Feng, Strengthening of composites due to microstructural changes in the matrix, Acta Metall. Mater. 1991;39:47-57.
[34]
R.J. Arsenault and M. Taya, Thermal residual stress in metal matrix composite, Acta Metall. 1987;35:651-659.
[35]
R.M. Aikin and L. Christodoulou, The role of equiaxed particles on the yield stress of composites, Scripta Metall. Mater. 1991;25:914.
[36]
R.J. Arsenault and N. Shi, Dislocation generation due to differences between the coefficients of thermal expansion, Mater. Sci. Eng. A 1986;81:175-187.
[37]
J.K. Lee, Y.Y. Earmme, H.I. Aaronson and K.C. Russell, Plastic relaxation of the transformation strain energy of a misfitting spherical precipitate: ideal plastic behaviour, Metall. Trans. A 1980;11:1837-1847.
[38]
Lilholt N. Additive strengthening, deformation of multi-phase and particle containing materials. In: Hansen N, Horsewell A, Leffers T, Liohot H, editors. Roskilde, Denmark: Risǿ Nat. Lab; 1983. p. 381–6.
[39]
Clyne T, Whithers PJ. An introduction to metal matrix composites. Cambridge: Cambridge Press; 1993.
[40]
Kocks UF, Argon AR, Ashby MF. Thermodynamics and kinetics of slip. Progr. Mater. Sci. 1975;19:1-22.
[41]
H. Beladi, M.R. Barnett, Influence of aging pre-treatment on the compression deformation of WE54 alloy, Mater. Sci. Eng. A 2007;452-453:306-312.
La Metallurgia Italiana - May 2020
pagina 19
Memorie scientifiche - Miscellanea
Knock (and pre-ignition) damage on engine components: case studies E. Balducci, S. Parisi, F. Boccia, M. Barichello, L. Ceschini
Due to the stringent regulations in terms of CO2 emissions, in order to increase engine efficiency, design strategies are oriented towards both increased spark advance and higher compression ratio, determining a higher probability to induce knock and abnormal combustions. Since slight knock does not lead to compromising engine damage, it should be tolerated in order to pursue the maximum efficiency. In the present study, knocking damages on several combustion chamber components after industrial durability tests are shown, aiming to underline the main effects of knock and to guide materials and coatings selection. Some hints are also made to the deleterious effects caused by persistent knocking combustions turning into pre-ignition. Piston Al alloys are usually more sensitive to knock induced thermo-mechanical stresses, but also cylinder heads, liners and spark plugs might be affected.
KEYWORDS: KNOCK - AUTOMOTIVE PISTON - COMBUSTION CHAMBER COMPONENTS - FAILURE ANALYSIS INTRODUCTION Knocking combustions are one of the main concern in the latest generation Spark-Ignition (SI) engines, since higher compression ratio and spark advance are desired to maximize engine efficiency, leading to higher pressure and thermal load inside the combustion chamber and thus to a higher probability to induce abnormal combustions [1,2]. This issue is further emphasized by the widely adopted turbochargers, whose aim is to regain a high output power, in spite of engine downsizing [3]. Differently from a normal combustion, which is triggered by the spark plug and it develops through a spherical flame front, knock consists in the spontaneous auto-ignition of the end-gas ahead of the propagating flame. This irregular combustion mode is characterized by a substantial increase of the rate of heat release and pressure oscillations, whose result is an enhan-
E. Balducci
Dip. di Ingegneria Industriale (DIN), Alma Mater Studiorum – Università di Bologna / Reparto Sperimentazione Motopropulsori – Ferrari Auto S.p.A, Maranello, Modena
Corresponding author e-mail: Eleonora.Balducci@Ferrari.com
S. Parisi, F. Boccia, M. Barichello
Reparto Sperimentazione Motopropulsori – Ferrari Auto S.p.A, Maranello, Modena
L. Ceschini
Dip. di Ingegneria Civile, Chimica, Ambientale e dei Materiali (DICAM), Alma Mater Studiorum – Università di Bologna
ced heat flux coupled with higher mechanical stresses [4,5]. Due to the need to push the limits of engine efficiency, knock should be today partially tolerated, thus it becomes necessary to accurately estimate possible knocking damages [6–8]. In the following paragraphs, knocking damages after typical industrial durability tests are shown, aiming to
La Metallurgia Italiana - maggio 2020
pagina 20
Scientific papers - Miscellaneous underline both that slight knock is not detrimental to engi-
Spectruma GDA 650). Aiming to prevent piston rings sti-
ne life [8,9] and that materials and coating selection plays a
cking, the 1st ring groove is hard anodized. Cylinder heads
key role in limiting the damage, besides a calibration strate-
are made of a gravity die cast A356 Al alloy, whose micro-
gy able to promptly switch off abnormal combustion over a
structural characteristics were deeply investigated in [10].
certain threshold.
The analyzed cylinder liners are Nikasil coated [11], while spark plugs consist of noble metals electrodes and a brittle,
EXPERIMENTAL METHODS
ceramic insulator nose enveloping the ground electrode.
The objects of the experimental activities have been the
The 1st level analysis of all components was carried out
combustion chamber components which are mainly af-
through a high-resolution Nikon D40 digital camera, a ste-
fected by knocking combustions: pistons, cylinder liners,
reo-microscope and a 3D digital microscope (Hirox KH-
cylinder heads, spark plugs. All analyzed pistons are forged
7700 equipment). More in depth analyses have been con-
and made of a nearly eutectic Al-Si alloy, T7 heat treated,
ducted through the Scanning Electron Microscope Zeiss
whose chemical composition (Table 1 [7,8]) was checked by
EVOÂŽ MA 50 (SEM), equipped with an energy dispersive
a Glow Discharge Optical Emission Spectroscope (GD-OES
X-Ray spectroscope (EDS).
Tab.1 - Results of GD-OES chemical analysis on pistons crown (average of 3 points of measurement)
El. [wt%]
Si
Cu
Mg
Ni
Fe
Al.
11.87
2.93
0.76
2.25
0.24
Bal.
RESULTS AND DISCUSSION
More interesting from a technical point of view and challen-
Pistons damage under low/middle knocking combu-
ging in terms of both materials research and engine control
stions.
strategies is a medium knocking level. The result of a persi-
As reported in the introduction, pressure oscillations as-
stent condition of medium knocking combustions is shown
sociated to knocking combustions induce increased ther-
in Fig.1: the occurrence of a sliding contact between cylin-
mo-mechanical stresses [4,5]. Due to the high sensitivity
der and piston valve relief is perceivable in the upper poli-
of Al alloys to thermal loads, pistons are mainly affected by
shed area, while the jagged edge of the valve relief shows a
knocking damage and deserve particular attention. Light
moderate erosion. An incipient erosion is also perceivable
knocking combustions usually produce almost no damage
at piston ring groove, highlighted by arrows at higher ma-
or typical slight erosion signs on Al pistons head, in parti-
gnitude: the ring groove is a crevice area, a potential site
cular at valve reliefs or at piston top land. A polished area
of knock triggering since it collects the end-gases furthest
at valve reliefs edge is frequently observed: due to the high
from the spark-plug [8,9,12], moreover the hard and britt-
surface/volume ratio of this area, local heating is conside-
le anodized layer is extremely sensitive to knock pressure
rably favored [8]; the consequent local thermal expansion
waves. It should be also highlighted that the anodized layer
produces a limited contact between cylinder liner and pi-
grows thanks to Al passivation, therefore it hardly covers
ston valve relief. In this case, none of the other components
eutectic Si or primary Si crystals, which form weak points
of the combustion chamber are involved, and typically the
[8,13]. SEM-EDS investigations have been carried out on
cylinder surface treatment is not affected. Many examples
the area highlighted in red in Fig.1, in order to depict the
of tiny damage under controlled knocking conditions for
first stages of the anodized layer damage. The results are
up to 15h bench tests are reported in [8]: it should be poin-
reported in Fig.2: small cracks are observed at ring groove
ted out that, to some extent, this is not a fatal engine dama-
edge, highlighted by the arrows, and EDS analyses in corre-
ge, since it simply produces debris inside the combustion
spondence of cracks show a higher Si content, confirming
chamber, without affecting piston structural resistance or
the presence of primary or eutectic Si crystals beneath.
engine compression ratio.
La Metallurgia Italiana - May 2020
pagina 21
Memorie scientifiche - Miscellanea
Fig.1 -Hirox image of an automotive piston intake valve relief. Erosion is perceivable both in the upper part of the valve relief (see jagged edge) and in the ring groove (white discoloration). Image from a turbocharged V8 engine.
Fig.2 -SEM micrographs of the 1st ring groove anodized layer, characterized by incipient erosion. EDS analyses revealed the presence of a higher amount of Si beneath the cracks. Image from a turbocharged V8 engine.
Even if no consequences are perceived at the initial stages
power loss and lower combustion efficiency. Typical images
the 1 ring functionality. A persistent erosion process mi-
of the anodized layer, several micro-welding spots can be
of the anodized layer erosion, this damage might obstruct st
ght produce a total wear of the anodized layer, leading to a direct contact between the 1 ring and piston Al alloy. Unst
der these conditions, the 1st ring is prone to sticking to the
lower flank of the ring groove due to the high pressure and temperature induced by combustion, inevitably resulting in
of ring sticking are reported in Fig.3. In case of heavy wear
observed (arrows in Fig.3a). At higher pressure/temperature,
the damage is rapidly intensified, leading to a complete ring sticking (Fig.3b); an Al transfer layer, typical of adhesive wear,
is also perceivable on piston ring (Fig.3c), and confirmed by SEM-EDS analyses (here not reported).
Fig.3 -Stereo-microscopy micrographs depicting 1st ring â&#x20AC;&#x201C; piston welding. (a) Micro-welding spots (pointed by arrows) and
Al plastic deformation. (b) Noticeable sticking area at the 1st ring groove. (c) Evidences of piston material deposited on piston ring.
Besides 1st ring sticking, one of the most critical knocking
of the valve relief (which is characterized by a reduced cross
ly checked through precision gauge blocks. Under severe
sional changes in the range 10-2 â&#x20AC;&#x201C; 10-1 mm, which in the worst
damage is piston ring groove deformation, which is usual-
knock erosion at piston head, in particular in correspondence
La Metallurgia Italiana - maggio 2020
section), the ring groove might undergo significant dimencases culminate in a complete piston groove closure and ring
pagina 22
Scientific papers - Miscellaneous locking. It is usually observed a correlation between plastic
piston top land towards the con-rod. It should be pointed out
shold. An example of that is reported in Fig.4: a tiny ring gro-
observed in combination with valve reliefs erosion, regardless
deformation and erosion of the valve relief over a certain threove deformation (order of magnitude 10-2 mm) corresponds
that the dimensional changes of the ring groove are frequently of 1st ring groove erosion: the peaks of eroded material in the
to a middle level erosion of valve relief (Fig.4a), while an in-
ring groove, locally reducing the clearance, provide a very
valve relief reported in (Fig.4b). Ring groove closure should
this is considered a fatal piston damage, since it compromises
creased deformation characterizes the heavily eroded exhaust
be mainly considered a consequence of knock-increased
thermal and mechanical loads, which induce deformation of
small contribution to ring locking. As well as micro-welding, the combustion gases sealing.
Fig.4 -Images of two pistons valve reliefs characterized by ring groove plastic deformation, V8 turbocharged engines. (a) Stereo-microscopy images at the intake valve relief, medium knocking erosion and tiny ring groove closure. (b) Macrograph at the exhaust valve relief, heavier knocking conditions: erosion is more pronounced, as well as ring groove closure. A separate discussion should be made for naturally aspirated engines. In this case, a considerably lower pressure inside the combustion chamber is reached, leading to both:
â&#x20AC;˘ Lower probability to induce knock at the ring groove; anodized layer erosion is thus rarely observed.
â&#x20AC;˘ Slower wear rate of anodized layer due to lower contact pressure between piston ring and groove.
â&#x20AC;˘ Lower temperature inside the combustion chamber (since it is directly related to the combustion pressure [6,8]);
this leads to higher structural resistance (in particular of heat-sensitive Al components such as pistons) and lower
probability to incur in plastic deformation of the ring groove.
However, as well as pistons equipping turbocharged engi-
nes, knock-induced erosion is typically observed at piston valve reliefs. An example of middle-high level erosion is re-
ported in Fig. 5: it should be pointed out that no deformation of the ring groove is detected and no damage is observed at the anodized layer, even if both polishing and erosion are clearly perceivable, indicating the occurrence of knocking combustions.
Fig.5 - Knock induced erosion (middle level) in an automotive piston belonging to a naturally aspirated engine. Stereo-microscopy micrographs focus on intake valve relief and piston pin axis side; no damage of the anodized layer at the 1st ring groove is observed.
La Metallurgia Italiana - May 2020
pagina 23
Memorie scientifiche - Miscellanea Pistons damage under heavy knocking combustions
pre-ignition occurrence. A V8 turbocharged engine, wi-
(eventually turning into pre-ignition).
thout a calibrated knock control strategy, was involved.
As highlighted in the previous paragraphs, the major da-
The effects of this sequence on the 8 pistons are shown in
mages connected to knocking combustions are, in order
Fig.6b and here schematically described:
of importance: ring groove plastic deformation, complete
â&#x20AC;˘ At all Al pistons heads, melting signs are observed,
wear of anodized layer leading to micro-welding, erosion
often resulting in the formation of blow-by channels;
of the anodized layer, erosion at piston head (in particu-
under these conditions, also other combustion cham-
lar at valve reliefs). It should be however pointed out that
ber components are covered by molten Al spots, such
knock is an autocatalytic phenomenon: due to the induced
as injectors, spark-plugs, cylinder liners and heads.
temperature increase, a persistent knocking condition mi-
â&#x20AC;˘ The significant temperature increase and induced ther-
ght rapidly degenerate into more severe knocking cycles
mal expansion produce seizure marks, perceivable at
and finally into pre-ignition sequence (as confirmed by
all pistons lands, in particular at pin axis side for the ab-
[14]). In-cylinder pressure signals reporting a similar event
sence of piston skirt constraint.
are displayed in Fig.6a: pressure oscillations due to knock are rapidly intensified, then suddenly switched off due to
â&#x20AC;˘ In the severest cases, 1st ring is completely jammed or subjected to a substantial plastic deformation.
Fig.6 - Degeneration of severe knocking combustions into pre-ignition sequence. (a) In-cylinder pressure signal, filtered in order to show MAPO parameter (MAPO explanation in [6]). (b) Effects on pistons of severe knocking combustions + pre-ignition. Damage of combustion chamber components under he-
typical knock damage of Al cylinder heads is limited to sur-
avy knock: cylinder heads, liners, spark plugs
face erosion, as reported in Fig.7: in this case, the intake side
In case of heavy pressure oscillations, besides pistons, other
is involved. Erosion at cylinder head does not usually com-
components of the combustion chamber are usually affected
promise engine functionality, until the integrity of its cooling
by knocking damage. Among them, as can be expected, Al
channels is preserved. This damage is however rarely obser-
cylinder heads are sensitive to knock-induced mechanical
ved and it is a marker of persistent high-level knocking com-
stresses, further emphasized by temperature increase. The
bustions, which should be avoided.
La Metallurgia Italiana - maggio 2020
pagina 24
Scientific papers - Miscellaneous
Fig.7 -Macrographs reporting erosion at cylinder heads, V8 turbocharged engines. Even if made by steel and Nikasil coated, cylinder liners as
melting of the liner is visible at the TDC, beneath the location
related to the knock-induced overheating, which leads to a
triggering knocking and pre-ignition combustions.
well might also be affected by knock. The damage is mainly reduced functionality of lubricants, possible breakdown of
the lubrication film and significant piston thermal expansion, though localized and limited to piston top land in case of ef-
ficient knock control strategy (see tiny seizure marks in the thrust and anti-thrust side in Fig.8a). In case of repeated knock and pre-ignition, the insufficient clearance between the ma-
tching surfaces and the resulting friction further intensify the
heat-induced expansion, finally resulting in complete piston seizure. Such destructive effects are reported in Fig.8b: several seizure marks are visible on cylinder liner, together with
transferred Al material. It is interesting to point out that also
of piston valve relief, which is supposed to be the hot spot Also spark-plugs might be affected by severe knock or pre-ignition and their damage inevitably compromises the com-
bustion process. In particular, partial rupture of the ceramic insulator due to thermal shock might be produced by increased thermo-mechanical stresses (Fig.9a); in this case, usually
spark leaks can be observed, indicating reduced spark plug
functionality. Al deposits coming from pistons are usually
observed, while melting of the electrodes and ceramic insulator is perceivable in the severest abnormal combustions, due to higher thermal loads.
Fig.8 - Macrographs reporting cylinder liners damage. (a) Tiny seizure marks (severe knock but efficient knock control). (b) Heavy seizure marks due to knock + pre-ignition; in addition, transfer of Al and partial melting under valve relief location are observed.
Fig.9 - Spark plugs damage due to knock or pre-ignition. (a) Breakage of ceramic insulator and spark leaks. (b) Electrodes melting.
La Metallurgia Italiana - May 2020
pagina 25
Memorie scientifiche - Miscellanea Conclusions
leness of the anodized layer, which is substantially sensitive
and pre-ignition damage on several engine components after
sed brittleness and defects density, a thicker anodized layer
In the present paper, different case studies collecting knock industrial durability tests are reviewed, aiming to underline the critical issues to be taken into account for materials se-
lection in case of high output power engines, which are more likely to encounter abnormal combustions during their life.
The following damages are frequently observed at mid/high
knocking level on automotive pistons equipping turbocharged engines, and should be avoided in order not to compromise pistons functionality: (i) significant wear of the anodized layer at the piston ring groove (potentially turning into micro-welding), (ii) ring groove closure due to plastic de-
formation. Piston head and valve reliefs erosion is not compromising to some extent. Piston material selection plays a
decisive role in partially limiting these unfavorable effects, thus making it possible to accept light/mid knocking com-
bustions, which allow a higher efficiency engine operating
point. The understanding of the damage mechanisms offe-
red in the present paper suggests various insights for materials selection.
For example, it has been observed that the wear of the ring
groove anodized area is directly related to the intrinsic britt-
to knock pressure waves. It follows that, due to its increa-
cannot improve the ring groove response to knocking com-
bustions. It should be also stressed that the anodized layer hardly covers the primary Si particles of the Al-Si base alloy (here taken into account), and a more dense and uniform PEO
layer (plasma electrolytic oxidation) might help. Another so-
lution could be a co-forged steel ring carrier, but its higher cost makes it a preferential candidate for racing applications rather than for mass production pistons.
As regards ring groove closure, it is evident that the solution is continuing to work towards an increased alloy resistance to knock induced thermo-mechanical stresses, thus shifting the plastic deformation limit of the alloy.
Under heavier and persistent knocking combustions, often degenerating into pre-ignition, deleterious damages are witnessed, such as piston seizure and ring locking, coupled by cylinder heads, cylinder liners and spark plugs damage. These high-intensity abnormal combustions should be completely avoided through effective engine calibration strategies,
since materials selection is no more able to limit the effects on engine functionality.
Bibliography [1]
N. Cavina, E. Corti, G. Minelli, D. Moro, L. Solieri, Knock Indexes Normalization Methodologies, SAE Int. J. Engines. (2006).
[2]
G. Töpfer, J. Reissing, H. Weimar, U. Spicher, Optical Investigation of Knocking Location on S.I.-Engines with Direct-Injection, Sae Tech. Pap. Ser. (2000).
[3]
J. Mckenzie, W.K. Cheng, The Anatomy of Knock, (2016).
[4]
J. Mutzke, B. Scott, R. Stone, J. Williams, The Effect of Combustion Knock on the Instantaneous Heat Flux in Spark Ignition Engines, SAE Int. (2016).
[5]
B. Grandin, I. Denbratt, The Effect of Knock on Heat Transfer in SI Engines, Sae Tech. Pap. Ser. 2002-01-0238. (2002).
[6]
N. Cavina, N. Rojo, L. Ceschini, E. Balducci, L. Poggio, L. Calogero, R. Cevolani, Investigation of Knock Damage Mechanisms on a GDI TC Engine, SAE Int. (2017).
[7]
L. Ceschini, A. Morri, E. Balducci, N. Cavina, N. Rojo, L. Calogero, L. Poggio, Experimental observations of engine piston damage induced by knocking combustion, Mater. Des. 114 (2017) 312–325.
[8]
E. Balducci, L. Ceschini, N. Rojo, N. Cavina, R. Cevolani, M. Barichello, Knock induced erosion on Al pistons : Examination of damage morphology and its causes, Eng. Fail. Anal. 92 (2018) 12–31.
[9]
J. Fitton, R. Nates, Knock Erosion in Spark-Ignition Engines, SAE Tech. Pap. (1996) 11.
[10]
L. Ceschini, A. Morri, A. Morri, G. Pivetti, Predictive equations of the tensile properties based on alloy hardness and microstructure for an A356 gravity die cast cylinder head, Mater. Des. 32 (2011) 1367–1375.
[11]
H. Yamagata, The science and technology of materials in automotive engines, Woodhead, 2005.
[12]
R.J. Nates, Thermal Stresses Induced by Knocking Combustion in Spark-Ignition Engines, Sae Tech. Pap. Ser. (2000).
[13]
L.E. Fratila-Apachitei, F.D. Tichelaar, G.E. Thompson, H. Terryn, P. Skeldon, J. Duszczyk, L. Katgerman, A transmission electron microscopy study of hard anodic oxide layers on AlSi(Cu) alloys, Electrochim. Acta. 49 (2004) 3169–3177.
[14]
N. Cavina, N. Rojo, A. Businaro, L. Ceschini, E. Balducci, A. Cerofolini, Analysis of Pre-ignition Combustions Triggered by Heavy Knocking Events in a Turbocharged GDI Engine, Energy Procedia. 101 (2016) 893–900.
La Metallurgia Italiana - maggio 2020
pagina 26
Scientific papers - Miscellaneous
Detection of Non-metallic Inclusions in 12Mn Steel Continuous Casting Round Billets X. Wang, J. Wei, S. Qiu
Automated particle analysis was carried out to explore non-metallic inclusions in 12Mn steel continuous casting round billets, which has the features of quick obtaining the morphology, size, original positions, and composition of inclusions in a certain area. Both morphology and composition of main inclusions were calculated by using thermodynamic calculation. Meanwhile, considering the all kinds of inclusions, the spatial distribution was identified, including the distribution of oxide and sulfide inclusions. The obtained information above could be adopted to explore the source of inclusions and modify ladle refining process.
KEYWORDS: NON-METALLIC INCLUSIONS; ASPEX SCANNING ELECTRON MICROSCOPE; OPA; SLIME; 12MN STEEL; CONTINUOUS CASTING; ROUND BILLETS INTRODUCTION Non-metallic inclusionsâ&#x20AC;&#x2122; characterization plays a crucial role in making clean steel. Inclusions in the final product are harmful to the quality of steel products [1, 2]. To obtain high-performance steel, the number of the inclusions have to be diminished. Generally speaking, non-metallic inclusions could be categorized as indigenous and exogenous. Indigenous inclusions stem from alloying elements which react with dissolved gas to generate solid inclusions during continuous casting. Some aspects can lead to inclusions, including deoxidation, reoxidation and solidification from reduced gas solubility. Sources outside of the liquid steel produce exogenous inclusions, such as slag
Xu Wang, Jun Wei, Shengtao Qiu
National Engineering Research Center of Continuous Casting Technology, Central Iron and Steel Research Institute, Beijing 100081, China
entrainment or refractory wear. The evaluation methods of non-metallic inclusions are important to metallurgists, which comprise the amount, size distribution, morphology, spatial distribution, and their chemical composition. [1, 3-12] More than twenty methods of evaluating inclusions impurities were summarized by Zhang. [1]. Metallographic microscope [13], one of these methods, is extensively used to explore size of inclusions and the two-dimensional morphology in steel. But, the chemical composition
La Metallurgia Italiana - May 2020
pagina 27
Memorie scientifiche - Miscellanea of inclusions cannot be identified. Scanning electron mi-
Ultrasonic inspection [19-21] are more time-saving than
croscopy [14] allows exploration of morphology of inclu-
methods above, and could be applied for online analysis;
sions. Furthermore, scanning electron microscopy allows
yet the composition data and morphology are difficult to
identification of the elemental composition of inclusions
obtain. Nevertheless, other indirect methods, such as total
by exerting with energy-dispersive spectroscopy. But it is
oxygen (T.O) [23, 24] and continuous excitation of spark
too time-intensive to count the majority of inclusions by
spectrum, have the limitations of exploring both the com-
using this method. Although acid extraction method could
position [25, 26] and the distribution of inclusions.
explore the stereoscopic morphology of inclusions, it de-
However, as the above mentioned papers do not address
stroys sulfide inclusions to some extent. [15–18] Involving
specific steel grades, in the current study typical inclusions
the extraction using bromine-methanol, iron bromide dis-
in 12Mn steel round billets were investigated. Furthermo-
solves rapidly, so a chelate has to be added to dissolved
re, the size, spatial distribution, and composition of inclu-
iron in the electrolytic approach, which is conducive to
sions in 12Mn steel round billets were observed.
revealing the three-dimensional morphology and keeping composition of the inclusions. X-ray detection [22] and
INTRODUZIONE
Fig.1 - Flow chart of production process of 12Mn steel round billet
Fig.2 - Sample from 12Mn round billet
12Mn steel round billet samples were taken from conti-
sis pattern. To begin with, the certain area was classified
nuous casting round billet which stemmed from alumi-
to some fields by the microscope. The electron beam
num-killed low carbon steel in a six strand CC (Fig. 1). The
was set on a field, then the microscope implements qui-
schematic of billet is shown in Fig. 2. The composition in
ck search with search steps. The intensity in back-scatter
12Mn steel is illustrated in Table I. The casting speed was
electrons was transmitted into the computer. When par-
1.6 m/min to 1.8 m/min leading to 40 minutes of casting
ticle was obtained, the step size was dropped to measure
time per heat. Besides, round billet samples were achieved
the dimensions of the inclusions. The center of inclusion
at steady state. First, the samples were polished. Then, the
was illuminated, and the chord algorithm was identified to
2-dimensional morphologies and compositions of inclu-
explore the particle. Last, the beam was fixed in the center
sions in 12Mn steel samples were analyzed, assisted with
of inclusions to obtain the characteristic X-ray. Through
using an automated SEM–EDS—ASPEX 1020 system. [27]
combination of steps above in corresponding field, next
The frame-based analysis is the automated particle analy-
the beam was transformed to next field. [28, 29]
Tab.1 - Chemical composition of steel sample % Element
C
Si
Mn
P
S
Alt
T.O
12Mn
0.1
0.28
1.24
0.013
0.002
0.03
0.0025
La Metallurgia Italiana - maggio 2020
pagina 28
Scientific papers - Miscellaneous In the following experiment, the size distribution, rough
the two-dimensional morphologies and composition
morphology, and composition of inclusions were auto-
detected by using SEM-EDS. In order to obtain thre-
matically achieved by coping with ASPEX 1020 system.
e-dimensional morphologies of non-metallic inclusions
Furthermore, the ASPEX has the features of quick scan-
greater than 50 μ m in 12Mn steel round billet, inclusions
ning, as a result, most of the particles were tested in se-
were partially extracted from samples by the method of
veral hours, even though the image resolution of inclu-
Slime reported by Fang.[33] The scheme of the device
sions is not high. The sample detecting 10 x 15 mm 2 was
is illustrated in Fig. 5. The electrolyte contained 89%
measured. The beam scanned the area on the 10 x 15 mm 2
methanol + 5% + glycerine + 5%
sample, eventually 63 mm 2 scanned area was analyzed.
trithanolamine + 1% tetramethyl ammonium chloride.
μ m, implying
Argon atmosphere was implemented to prevent oxida-
that all the inclusions size measured by the ASPEX 1020
tion of 12Mn steel. The anode was cylindric with 5 mm
μ m. The phase diagrams of inclusion is
in diameter and the cathode was 100 mm high and 60
illustrated in Figure 3. Figure 4 represents the schematic
mm in diameter. After electrolysis, non-metallic inclu-
of scanning area by Original Position Analysis (OPA).
sions were partially extracted. At least 20 inclusions were
After the steel samples were polished, we could obtain
explored with SEM-EDS.
The minimum inclusion size was fixed at 2 was larger than 2
Fig.3 - Inclusion species phase diagram
Fig.4 - Scanning area of OPA
La Metallurgia Italiana - May 2020
pagina 29
Memorie scientifiche - Miscellanea
Fig 5 - Schematic of Slime to extract inclusions from 12Mn steel round billet
RESULT AND DISCUSSION
(Al 2O 3) shown in Figure 6. Most of alumina (Al 2O 3) inclu-
Figure 3 displays the composition of inclusions in 12Mn
sions originate from reoxidation. High magnesium oxide
round billet sample using ASPEX. The typical inclusions
inclusions stem from the reaction between magnesium
in the 12Mn steel round billets are alumina-based clu-
refractory and liquid steel, in particular tundish lining re-
sters, cluster inclusions or alumina magnesia (Al 2O 3-
fractory. Sulfide inclusions precipitate on the condition
MgO) spinel single, silicon oxide (SiO 2) bearing sphe-
of solidification of the steel. The resolution achieved by
rical inclusions, separate sulfide-based inclusions, and
ASPEX was fixed for providing enough data to obtain the
irregularly shaped slag inclusions containing potassium
size, area, and perimeter with available detecting time
oxide (MgO), calcium oxide (CaO), and sodium oxide
and storing space for a large number of inclusions.
Fig.6 - Inclusion morphology and composition (mass pct) obtained by SEM.
La Metallurgia Italiana - maggio 2020
pagina 30
Scientific papers - Miscellaneous
Fig.7 - Elemental mapping of typical MgO-Al2O3-CaO inclusions There existed a lot of MgO-Al 2O 3-CaO complex inclu-
racteristics were as follows: Al and Ca were mainly ele-
sions. The morphology and composition of MgO-Al 2O 3-
ments; little Mg content was located in the center region
CaO inclusions in molten 12Mn steel are shown in Figure
of MgO-Al 2O 3-CaO inclusions; and Fe content in MgO-
7. The size of these inclusions was approximately 10
Îź m.
The shapes of inclusions tended to be more spherical.
Al 2O 3-CaO inclusions was much lower than that in other matrix regions.
From elemental mapping (Figure 7), the common cha-
Fig.8 - Elemental mapping of typical SiO2-Al2O3-CaO inclusions
La Metallurgia Italiana - May 2020
pagina 31
Memorie scientifiche - Miscellanea The elemental mappings of typical SiO 2-Al 2O 3-CaO inclu-
are Al 2O 3-containing types and their average size is 3.3
sions in 12Mn steel are illustrated in Fig.8. The contents
Îź m calculated from Figure 9. Besides, in order to obtain
of Al and Ca are significantly higher than Si. The size of
the distribution of Al 2O 3-containing inclusions, we explo-
the main inclusions is about 10
Îź m. The area on the right
red the line distribution (Figure 10), two-dimensional di-
shows little amounts of Silicon.
stribution (Figure 11), and three-dimensional distribution
The method of OPA according to statistical analysis of
of Al (Figure 12). These results imply that Al 2O 3-contai-
more than ten thousands primary optical signals is ap-
ning inclusions were located in the center region of the
plied in this work. The main inclusions examined by OPA
round billet.
Fig.10 - Content-frequency distribution of Al
Fig.11 - Two-dimensional distribution of Al
Fig.12 - Three-dimensional distribution of Al La Metallurgia Italiana - maggio 2020
pagina 32
Scientific papers - Miscellaneous The inclusion in 12Mn steel round billets destroys the
significant. Moreover, the experimental results show that
uniform structure of metal, especially the large inclu-
the total average inclusions weight is 7.76 mg/10 kg for 4
μ m. In order to obtain non-metal inclusions with the size of greater than 50 μ m,
samples (Table 2), which is a common value. This is due
the inclusions in 12Mn steel round billet are extracted
LF and VD process), the large inclusions are fully floating
and separated by Slime method. The inclusions’ three
up to the surface of molten steel, resulting in fewer large
–dimensional morphologies are seen in Figure 13, from
inclusions in 12Mn steel.
sion with diameter greater than 50
to the fact that the refining time is sufficient (containing
above results, the numbers of larger inclusions are not Tab.2 - Analysis results of large oxide inclusions in 12Mn steel Electrolysis weight
Inclusions’ size level
Original weight
Remaining weight
kg
kg
kg
mg
mg/10kg
1
4.075
0.989
3.086
1.70
2
4.045
0.763
3.282
3
4.154
0.866
4
4.113
0.800
Sample
Total inclusions weight
<80
80~140
μm
140~300 μm
>300 μm
mg
mg
mg
mg
5.51
0.10
0.50
0.70
0.40
3.20
9.75
0.60
1.20
1.10
0.30
3.288
3.40
10.34
1.10
1.50
0.80
-
3.313
1.80
5.43
0.10
0.80
0.90
-
μm
Note: - represents there is no detected inclusion corresponding to size.
50~80μm
80~140μm
140~300μm
>300μm
Fig.13 - Large inclusions at 20 magnification
La Metallurgia Italiana - May 2020
pagina 33
Memorie scientifiche - Miscellanea As shown in Figure 14, the ternary diagram of oxides
diagram. The samples obtained from both steady sta-
obtained is depending on the chemical composition of
te (S1) and ladle (S2) indicate that most inclusions were
MgO, Al 2O 3 and CaO. Every dot in the ternary diagram
near the Al 2O 3 region. Exceeding MgO (greater than 30
means the chemical composition of one inclusion. So-
pct) could have a result of higher (over 2573 K (2300 °C))
lid inclusions could lead to clogging of 12Mn steel by
melting point of inclusions, and thus throughout the ca-
attaching to the nozzle during solidification. Inclusions
sting process these inclusions were solid. As plenty of
must be in the liquid state to avoid nozzle clogging. But
the inclusions were of high melting compositions, so the
the composition distribution means that the majority of
submerged entry nozzle was dramatically clogged during
inclusions were solid at casting temperature. There were
continuous casting (Figure 15), leading to premature ter-
only several inclusions in the liquid state, as shown by
mination of production.
the shaded area (temperature < 1500 °C) in the ternary
Fig.14 - Al2O3-CaO-MgO inclusions in 12Mn steel [34].
Fig.15 - Erosion in the submerged entry nozzle .
As shown in Fig 16, the computed diagram of Al-Ca-O
12Mn steel with composition (Table 1) was computed
system in 12Mn steel round billet at 2146 K (1873 °C) de-
with the help of the thermodynamic software FactSage
monstrates the stable areas of different inclusions for-
using ‘‘FACT53’’, ‘‘Ftoxid,’’ and ‘‘FSstel’’ databases[35]
med by [Al], [Ca], and [O]. The interaction activity coeffi-
and is illustrated in Figure 17. When [Ca] in 12Mn steel
cient and the logK for the formation in 12Mn molten steel
was 2 ppm, MgO•Al 2O 3 spinel inclusions cause the clog-
were different from others. [30–34] Thus, the activity of
ging of submerged entry nozzle, due to its high melting
oxide products is deemed to be unity. The numerical va-
point and high hardness. During the period of solidifica-
lue of the dotted circles represents the oxygen content.
tion, liquid inclusions were modified to CaMg 2Al 16O 27 and
The [Al] and [Ca] content in 12Mn steel must be set in the
CaS. After the temperature attained nearly 1573 K(1300
shaded region to prevent nozzle clogging in Figure 16.
°C), most of MnS and some of TiN secondary phase could
The Al 2O 3-3CaO and 7Al 2O 3-12CaO inclusions remain li-
precipitate. When [Ca] reaching from 5 to 10 ppm (Figu-
quid at 2146 K (1873 °C) among all Al-Ca-O inclusions.
res 17(b) and (c)), most of the spinel inclusions dimini-
The [Ca] and [Al] contents in 12Mn steel shown in Table 1
shed and finally disappeared, as a result, only liquid inclu-
were located in the Al 2O 3-rich area, implying that the cal-
sions remained in the molten steel. MnS inclusions were
cium treatment was effective and more Ca was required.
changed to CaS by coping with calcium treatment. When
The Equilibrium diagram of inclusions during casting of
adding more calcium (Figures 17(d) and (e)), CaS and li-
La Metallurgia Italiana - maggio 2020
pagina 34
Scientific papers - Miscellaneous quid particles were obtained in molten steel, leading to
ce, controlling of the composition and refining are bene-
the result of clogging the submerged entry nozzle. Hen-
ficial to the last consequence on the casting process.
Fig.16 - Calculated stability diagram of Al-Ca-O system in the molten steel at 2146 K (1873°C [34]. (a)Ca=2ppm
(c)Ca=10ppm
(b)Ca=5ppm
(d)Ca=20ppm
(e)Ca=50ppm
Fig.17 - Equilibrium diagram of inclusions during solidification for 12Mn steel of composition: Fe-0.1C-0.28Si-1.24Mn0.002S-0.0006Mg-0.0025O-0.0045N-0.03Al-Ca in mass pct. CONCLUSIONS
tial distribution and composition.
Automated particle analysis was widely used to explore
(2) The experimental results are in good agreement with
inclusions in 12Mn steel continuous casting round billet.
the thermodynamic calculation, indicating that most of
The conclusions were summarized:
the inclusions remained solid at casting temperature with
(1) Automated particle analysis was used to provide an
few in the liquid as inclusions are not changed by the re-
accurate and quick scanning in a certain area to obtain in-
fining process.
formation on inclusions, such as morphology, size, spa-
La Metallurgia Italiana - May 2020
pagina 35
Memorie scientifiche - Miscellanea ACKNOWLEDGMENTS
The authors are grateful for financial supporting and experi-
mental help from the Tianjin Iron and Steel Group Co., Ltd., Tianjin, China.
REFERENCES [1]
L. Zhang and B.G. Thomas: ISIJ Int., 2003, vol. 43 (3), pp. 271–91.
[2]
T. Ehara, Y. Kurose, and T. Fujimura: 79th Steelmaking Conference Proceeding, ISS, Warrendale, PA, 1996, vol. 79, pp. 485–86.
[3]
L. Zhang and B.G. Thomas: 7th European Electric Steelmaking Conference, Venice, Italy, Associazione Italiana di Metallurgia,Milano, 2002, vol. II, pp. 277–86.
[4]
L. Zhang, B.G. Thomas, K. Cai, L. Zhu, and J. Cui: ISSTech2003, ISS, Warrendale, PA, 2003, pp. 141–56.
[5]
L. Zhang: Steel Res. Int., 2006, vol. 77 (3), pp. 258–69.
[6]
L. Zhang: J. Iron. Steel Res. Int., 2006, vol. 13 (4), pp. 1–8.
[7]
L. Zhang and B.G. Thomas: Metall. Mater. Trans. B, 2006,vol. 37B, pp. 733–61.
[8]
S. Liu, S. Niu, M. Liang, C. Li, X. Zuo, L. Zhang, and X. Wang: Proceedings of AISTech 2007 Iron & Steel Technology Conference and Exposition, AIST, Warrendale, PA, 2007, vol. II, pp. 771–80.
[9]
S. Liu, X. Zuo, L. Zhang, S. Niu, M. Liang, C. Li, and X. Wang: Clean Steel 2007, 2007, pp. 272–82.
[10]
X. Zuo, M. Long, J. Gao, Y. Wang, and L. Zhang: Iron Steel Technol., 2010, vol. 7 (10), pp. 65–76.
[11]
Y. Ren, Y. Chen, X. Yang, S. Yang, L. Zhang, X. Ding, J. Li, S. Li, and F. Liu: AISTech 2012 Proceedings, 2012, pp. 1171–77.
[12]
Y. Ren, L. Zhang, S. Yang, and W. Yang: AISTech 2013 Proceedings, 2013, pp. 1159–66.
[13]
R. Kiessling: Met. Sci., 1980, vol. 15 (5), pp. 161–72.
[14]
R. Rastogi and A.W. Cramb: 2001 Steelmaking Conference Proceedings, ISS, Warrendale, 2001, vol. 84, pp. 789–829.
[15]
S. Li, L. Zhang, and X. Zuo: Proceedings of Materials Science and Technology (MS&T) 2008,AIST,Warrendale,PA, 2008, pp. 1259–69.
[16]
K. Kawamura, S. Watanabe, and M. Yamada: Tetsu-to-Hagane, 1972, vol. 58 (14), pp. 2060–66.
[17]
L. Zhang, S. Li, J. Wang, and X. Zuo: Iron Steel (Chin.), 2009, vol. 44 (3), pp. 75–80.
[18]
W. Yang, X. Wang, L. Zhang, and W. Wang: Steel Res. Int., 2013,vol. 84 (9), pp. 878–91.
[19]
J. Tan and P.C. Pistorius: AISTech 2013 Iron and Steel Technology Conference, May 6, 2013–May 9, 2013, Pittsburgh, PA, U.S.A.,Association for Iron and Steel Technology, AISTECH, 2013, vol.1, pp. 1301–11.
[20]
P.C. Glaws, R.V. Fryan, and D.M. Keener: 74th Steelmaking Conference Proceedings, ISS, Warrendale, PA, 1991, vol. 74, pp. 247–64.
[21]
M. Iwasaki, N. Suzuki, T. Ohshiro, H. Utsumi, K. Miyake, and K.Sahara: R&D Res. Dev. Kobe Steel Eng. Rep., 1985, vol. 35 (3),pp. 73–76.
[22]
R.C. Sussman, M. Burns, X. Huang, and B.G. Thomas: 10th Process Technology Conference Proceedings, Iron and Steel Society, Warrendale, PA, 1992, vol. 10, pp. 291–304.
[23]
C. Bonilla: 78th Steelmaking Conference Proceedings, ISS, Warrendale, PA, 1995, vol. 78, pp. 743–52.
[24]
H. Gao: Steelmaking (Chin.), 2000, vol. 16 (2), pp. 38–43.
[25]
M. Goransson, F. Reinholdsson, and K. Willman: I Smaker, 1999, vol. 26 (5), pp. 53–58.
[26]
Q. Zhang, L. Wang, and X. Wang: ISIJ Int., 2006, vol. 46 (10),pp. 1421–26.
[27] http://www.aspexcorp.com/Solutions/Software/MQAtrade.aspx. [28]
F. Schamber: Introduction to Automated Particle Analysis by Focused Electron Beam, ASPEX Corporation, Report, 2009.
[29]
V. Singh, S. Lekakh, and K. Peaslee: 62nd SFSA Technical and Operating Conference, 2008.
[30]
The Japan Society for the Promotion of Science: Steelmaking Data Sourcebook, Gordon and Breach Science, New York, 1988.
[31]
B. Hallstedl: J. Am. Ceram. Soc., 1990, vol. 73 (1), pp. 15–23.
[32]
H. Itoh, M. Hino, and S. Ban-Ya: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 953–56.
[33]
H. Ohta and H. Suito: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 1131–39.
[34]
Ren Y , Wang Y , Li S , et al. Detection of Non-metallic Inclusions in Steel Continuous Casting Billets[J]. Metallurgical & Materials Transactions B, 2014, 45(4):1291-1303.
[35] http://www.factsage.com/.
La Metallurgia Italiana - maggio 2020
pagina 36
Scientific papers - Miscellaneous
Study on Heat Transfer Characteristics during Solidification of 18-ton Steel Ingot with Large Ratio of Height to Diameter Z. Yu, H. Zhang, X. Wang, X. Wu
In order to investigate the heat transfer characteristics during solidification of steel ingot with large ratio of height to diameter, numerical simulations of solidification process of 18-ton steel ingot were carried out. The simulated results were verified by the temperatures measurement during solidification of steel ingot. In addition, in order to further certify the mathematical model, the solidification process of 5.3-ton ingot has been investigated, the simulated shape and length of the shrinkage pipe of steel ingot agree well with the experimental result observed by the sectioning. It is found that the heat of molten steel is mainly transferred to the external environment through ingot body. With this context, the analytical method using the concept of thermal resistance is proposed to explore the heat transfer resistances of outer wall of mold, mold, ingot/mold interface and solidified shell. Consequently, the transient thermal resistances at different stages of steel ingot solidification were dug out. Based on the analyses of the heat transfer resistances at different stages of steel ingot solidification with different casting parameters, it is obtained that heat transfer of solidified shell is the main restrictive step of heat transfer in the whole solidification process for 18-ton steel ingot with large ratio of height to diameter.
KEYWORDS: KEYWORDS SOLIDIFICATION, STEEL INGOT, HEAT TRANSFER CONTROL, THERMAL RESISTANCE, NUMERICAL SIMULATION Introduction Large steel ingots are the basic raw materials for the equipment manufacturing industry. Its production capacity is directly related to the national industrial development level and economic lifeline. The steel ingot solidification process has an important influence on its quality and the property of final product. The solidification rate of steel ingot depends on the heat transfer from molten steel to external environment. As is known to all, it is difficult to measure heat transfer parameters directly during solidification of a steel ingot. However, with the rapid development of
Zhanyang Yu, Hui Zhang, Xuebing Wang Central Iron and Steel Research Institute,Beijing 100081,China
Xuan Wu
University of Science and Technology Beijing, Beijing 100083,China
computer technology, numerical simulation is being increasingly applied to study of solidification of steel ingot [1]-[4].The author [5] developed a two-dimensional numerical model of ingot solidification, and temperature distribution, distribution solid and liquid phase were calculated. Zhang et al. [6] studied the effect of casting pro-
La Metallurgia Italiana - May 2020
pagina 37
Memorie scientifiche - Miscellanea cess parameters on the shrinkage of ingot by numerical
been found to be the condition under
method. Wang [7] et al. studied that the best criterion has
(0)
(G and Rs are the temperature gradient and solidification
stigated. In addition, the effects of increasing the cooling
size of the simulated centerline shrinkage porosity agree
pouring temperature on the thermal resistances in diffe-
rate, respectively),with this criterion, the distribution and
well with the experimental results observed by the sectio-
ning and ultrasonic testing. Since Flemings and co-wor-
kers published their pioneer papers on macrosegrega-
intensity of the outer wall of the mold and the variation of rent stages of solidification process of steel ingot were further dug out.
tion[8]-[11], the mathematical model of macrosegregation
Numerical Simulation of Solidification of 18-ton Steel
ped various models to study the formation of macrosegre-
Establishment of Mathematical Model
has been developed continuously. Li et al.[12]13] develogation in ingots. Tu et al.[14] used a multicomponent multiphase model to study macrosegregation of 36-ton steel ingot. M.Wu et al.[15] introduced a four-phase mixed co-
lumnar-equiaxed solidification model to calculate the formation of shrinkage cavity and macrosegregation during
solidification of steel ingot. So far, scholars have focused their research efforts on the formation of defects in ingots,
such as shrinkage and macrosegregation. However, there
are few reports on heat transfer control during solidification of ingots with large ratio of height to diameter.
In this paper, through FEM (Finite Element Method) simulation in combination with the temperature measurement
and experimental sectioning investigation, the solidification process of 18-ton steel ingot with a large ratio of
height to diameter were carried out. An important result is obtained from the analysis of heat transfer characteristics
of ingot solidification, the heat of molten steel is mainly transferred to the external environment through ingot
body. With this context, the heat transfer restriction steps
of 18-ton ingot at different solidification stages were inve-
Ingot
Governing equation and geometry model
The solidification process of steel ingot was investigated by finite element method in ProCAST package. Assump-
tions were made: (1) the temperature and velocity of the molten steel poured into the mold from the top have an
even distribution; (2) the liquid metal was incompressible Newton fluid; (3) the convection was driven by thermal buoyancy; (4) the solutal convection was ignored; (5) the
heat transfer was coupled with the mold filling. A three-dimensional model is established based on the governing
equation, including the Navierâ&#x20AC;&#x201C;Stokes equation, the continuity equation, energy equation, Îş-Îľ equation, and VOF function.
The geometries and finite element mesh of the steel ingot,
the mold, the insulation brick and bottom pad are shown in Figure 1. The finite element mesh of the mold, the ingot, the insulation brick and bottom pad consisted of 71512 nodes and 334535 tetrahedral elements, which were selected based on several mesh refinements.
Fig.1 - Geometric models and finite element mesh of the mold, steel ingot, insulation brick and bottom pad, (a) Geometric models, (b)finite element mesh
La Metallurgia Italiana - maggio 2020
pagina 38
Scientific papers - Miscellaneous Thermophysical parameters
Insulation Brick are provided by the manufacturer, the va-
The thermophysical parameters of the Bottom Pad and
lues are shown in Table 1.
Tab.1 - The thermophysical parameters of Bottom Pad and Insulation Brick Material
Density(kg/m3)
Specific heat(J/gK)
Conductivity(W/(mK))
Bottom Pad
2900
1.5
4
Insulation Brick
500
1.08
0.78
The compositions of the steel ingot and mold are shown
and mold are calculated via database system in ProCAST
in Table 2. The thermophysical parameters of steel ingot
software, as shown in Figure 2.
Tab.2 - Composition of the ingot and mold(wt.%) Material
C
Si
Mn
P
S
Cr
Ni
Ingot
0.38-0.41
1.59-1.63
1.69-1.71
<0.005
<0.002
0.82-0.84
1.84-1.86
Mold (Ductile iron)
3.2-3.5
—
0.8-1.2
<0.005
<0.005
—
—
La Metallurgia Italiana - May 2020
pagina 39
Memorie scientifiche - Miscellanea
Fig.2 - Physical parameters of the ingot and mold:(a) density of the ingot;(b) thermal conductivity of the ingot;(c) enthalpy of the ingot;(d) density of the mold;(e) thermal conductivity of the mold;(f) enthalpy of the mold. Boundary and initial conditions
transfer coefficient of metal-mold interface changes with
Because of the gap between ingot and mold, the heat
time[16][17].It is shown in equation 1.
(1)
where hc = 800(1-t/tgap), and tgap is average formation time of
20W·m-2·K-1. The heat transfer coefficient between steel and
the gap between the ingot and mold; εeff is effective emissi-
bottom pad was assigned as 100W·m-2·K-1.The heat transfer
vity in ingot/mold interface,0.7;σ is Stefan–Boltzman con-
coefficient between mold and bottom pad was assigned as
stant, 5.67x10 W·m ·K ;Ti is temperature of the mold in
200 ;The heat transfer coefficient between base and bottom
ingot/mold interface,Tmi is temperature of the ingot in in-
pad was assigned as 100 .
-8
-2
-4
got/mold interface ; tgap of 18 and 5.3 ton steel ingots were
The heat transfer coefficient of the outer wall of mold wall
assigned as 1200s and 80s[18].
was assigned according to the following Equation 2 in whi-
The heat transfer coefficients of both mold-insulation bri-
ch both radiation and convection heat transfer were taken
ck and steel-insulation brick interfaces were assigned as
into consideration[19]. (2)
where Tme is the temperature around mold wall; T∞ is the
The heat transfer between the top of the ingot and the ex-
equivalent temperature of surroundings; εme is emissivity
ternal environment is also treated according to equation 2.
of outer wall of the mold,0.85; and σ is the Boltzmann con-
The initial values for each material are shown in Table 3.
stant. Tab.3 - Initial temperature values for each material Material
Steel
Mold
Insulation brick
Bottom pad
Initial value/°C
1560
80
40
200
La Metallurgia Italiana - maggio 2020
pagina 40
Scientific papers - Miscellaneous Verification of Mathematical Model
the mold during solidification of ingot was measured. Com-
Verification of temperature
parison between calculated results and measured values
In order to verify the accuracy of numerical simulation of
are shown in Figure 3. As can be seen that the calculated
ingot solidification, industrial experiments were carried out
values agree well with the measured ones.
in a steel plant. The temperature change of the outer wall of
Fig.3 - Position of measured point and comparison of calculated temperature with measured ones,(a) position of measured point,1#, 2# and 3# are the number of measuring points Verification of shrinkage pipe
(A)), photo of the 5.3-ton ingot (panel(B)), calculated result
In order to further certify the mathematical model, the soli-
(panel(C)), respectively. Figure 4 (A) and (C) confirmed that
dification process of 5.3-ton ingot with a height of 2820 mm
the simulated shape and length of the shrinkage pipe of the
and a diameter of 590 mm has been investigated. Figure 4
ingot are in good agreement with the experimental result
compiles the sectioned surface at top of the ingot (panel
observed by the sectioning.
La Metallurgia Italiana - May 2020
pagina 41
Memorie scientifiche - Miscellanea
Fig.4 - The sectioned surface at top of the ingot (A), photo of the 5.3-ton ingot (B), calculated result (C) Consequently, through FEM (Finite Element Method) simu-
tion front moves to the center of the ingot in a "deep U" sha-
and experimental sectioning investigation of the ingot, it is
rate of ingot body is faster than that of top and bottom of in-
lation in combination with the temperature measurement concluded that the mathematical model of solidification pro-
cess of ingot with large ratio of height to diameter in this paper is quite accurate.
Results and Discussion
Heat Transfer Characteristics of Steel Ingot Solidification
Fraction solid distribution at different time during ingot solidification is shown in Figure 5. As can be seen from figure that after the mold is filled with molten steel, the solidifica-
pe. The reason for this phenomenon is that the solidification got. In the final stage of solidification of the steel ingot, the
liquid steel in the center of ingot can solidify simultaneously and canâ&#x20AC;&#x2122;t be supplemented by the surrounding liquid metal, which easily leads to the defect formation of the shrinkage
porosity. At the end of ingot solidification, a deep shrinkage pipe was formed at the top of the ingot, which is one of the
characteristics of solidification of steel ingot with large ratio of height to diameter.
Fig.5- Fraction solid distribution at different time during ingot solidification
La Metallurgia Italiana - maggio 2020
pagina 42
Scientific papers - Miscellaneous Figure 6 shows evolution of heat storage of the mold during
ment, which leads to that the heat storage of mold increases
ge of solidification, the heat storage of mold is almost equal
quently, the mold is always in the state of heat storage during
solidification, as can be seen from figure that in the early stato the heat through the inner wall of mold. With the develop-
ment of solidification, the temperature on the outer wall of the mold is much higher, which accelerates the efficiency of
heat transfer from the outer wall of the mold to the environ-
slowly in the middle and late stages of solidification. Conse-
the whole solidification process of ingot, which is another characteristic of solidification of steel ingot with large ratio of height to diameter.
Fig.6 - Evolution of heat storage of the mold during solidification During the ingot solidification, the superheat and latent heat
ferent parts of ingot at the end of solidification is shown in
through those paths: 1) top of the ingot; 2) the side of the in-
mainly transferred to the external environment through in-
of molten steel are transferred to the external environment
sulation brick; 3) ingot body; 4) bottom of the ingot, as shown in Figure 7 (A). Proportion of total heat transfer quantity at dif-
Figure 7(B). As can be seen that the heat of molten steel is got body.
Fig.7 - Proportion of total heat transfer quantity at different parts of ingot at the end of solidification
La Metallurgia Italiana - May 2020
pagina 43
Memorie scientifiche - Miscellanea Thermal Resistance
with time. In order to control the solidification process of in-
tion process of ingot, the superheat and latent heat of mol-
at different stages of steel ingot solidification with different
The result is obtained from Figure 7 (B), during the solidifica-
ten steel are mainly transferred to the external environment through solidified shell, ingot/mold interface and mold in turn, as shown in Figure 8.
The heat transfer resistance of each section changes continuously with time. In different stages of the steel ingot solidification process, the restrictive step of heat transfer changes
gots, it is extremely important to identify the restrictive steps casting parameters. In the section, the heat transfer during
solidification of 18-ton ingot with a large ratio of height to diameter was studied. Then, the thermal resistance of each
heat transfer section in different solidification stages was found out.
Fig.8 - Schematic of heat transfer of steel ingot in the middle height during solidification, RM-0,thermal resistance of outer wall of mold; RM-1-0, thermal resistance of mold;
RAIR, thermal resistance of ingot/mold interface; RSHELL, thermal resistance of solidified shell In order to compare the heat transfer resistances of different
el ingot with large ratio of height to diameter were studied.
racteristics of heat transfer in the middle height of 18-ton ste-
resistance of each heat transfer section was found out.
heat transfer steps during solidification process, the cha-
Based on the concept of thermal resistance [ ], the thermal
Fig.9 - Evolutions of the transient thermal resistances of different heat transfer steps when the outer surface of the mold is cooled by air during ingot solidification
La Metallurgia Italiana - maggio 2020
pagina 44
Scientific papers - Miscellaneous Figure 9 shows evolutions of the transient thermal resi-
Based on the analysis of the thermal resistances of diffe-
stances of different heat transfer steps when the outer wall
rent heat transfer steps under the above condition, heat
of the mold is cooled by air during solidification of ingot.
transfer of solidified shell is the main restrictive step of
As can be seen from the figure that the thermal resistances
heat transfer in the whole solidification process for 18-ton
of both the ingot/mold interface and the mold are relati-
steel ingot with large ratio of height to diameter.
vely small in the whole solidification process. Although thermal resistance of the outer wall of the mold
Effect of Pouring Temperature on the Thermal Resi-
is larger than that of other heat transfer section in the early
stances
stage of solidification, the heat transfer of the outer wall of
The pouring temperature is a significant parameter in the
the mold is not the restrictive step of heat transfer. At the
solidification process of ingot, because it has a great in-
initial stage of solidification, the heat transfer rate of the in-
fluence on the defect formation of ingot such as cracks,
got is determined by both the heat transfer of ingot/mold
shrinkage porosity and macrosegregation.
interface and the heat storage of the mold. After the mold is
In order to explore the influence of different pouring tem-
filled with molten steel, the molten steel close to the mold
peratures on heat transfer resistances of steel ingot soli-
begins to form solidified shell of a certain thickness, heat is
dification, numerical simulations of solidification process
transferred to the mold through the ingot/mold interface,
of the 18-ton steel ingot with different pouring tempera-
which is the heat storage stage of the mold, as shown in
tures were carried out. Evolutions of the transient thermal
Figure 6. At the time, the heat transfer efficiency from the
resistances of different heat transfer steps with different
outer wall of the mold to the external environment is slow,
pouring temperatures are shown in Figure 10. As can be
therefore, the thermal resistance of the outer wall of the
seen from figure that at the initial stage of solidification, the
mold is greater than that of other heat transfer sections. In
change of pouring temperature has no effect on the ther-
the middle and later stages of solidification, the tempera-
mal resistances of different heat transfer sections. Howe-
ture on the outer wall of the mold is much higher, which
ver, in the middle and later stages of solidification, in-
accelerates the efficiency of heat transfer from the outer
fluence of variation of pouring temperature on the thermal
wall of the mold to the environment, the thermal resistan-
resistance of solidified shell is obvious. Steel ingot with a
ce of the outer wall of the mold decreases gradually.
high pouring temperature can lead to a small thermal re-
At the initial stage of solidification, the thermal resistance
sistance of solidified shell compared with that with a low
of solidified shell is small. With the development of soli-
pouring temperature.
dification, then solidified shell is getting thick, which re-
It can also be seen from the Figure 10 that at early stage
sults in the increase of corresponding thermal resistance.
of solidification, the thermal resistance of the outer wall
In the middle and late stages of solidification, the thermal
of the mold is the largest among all heat transfer sections.
resistance of the solidified shell is larger than that of other
In the middle and late stages of solidification, the thermal
heat transfer sections, especially near the final stage of so-
resistance of the solidified shell is larger than that of other
lidification, the thermal resistance of solidified shell is very
heat transfer section. In other words, the variation of pou-
large, therefore the heat transfer section of the solidified
ring temperature does not change the restrictive step of
shell is the restrictive step of heat transfer.
heat transfer in the process of steel ingot solidification.
La Metallurgia Italiana - May 2020
pagina 45
Memorie scientifiche - Miscellanea
Fig.10 - The transient thermal resistances of different heat transfer sections during steel ingot solidification with different pouring temperatures Conclusions
When the cooling mode of the outer wall of the mold is for-
el is mainly transferred to the external environment through
the transient thermal resistances of different heat transfer
In the process of ingot solidification, the heat of molten ste-
solidified shell, ingot/mold interface and mold in turn. The
heat transfer step that can be controlled artificially is the heat transfer from the outer wall of the mold to the environment.
Therefore, when the cooling mode of the outer wall of the
mold is forced air cooling, evolutions of the transient thermal resistances of different heat transfer steps were investigated.
When the outer wall of the mold is cooled by forced air, the
heat transfer coefficient between the outer wall of mold and the environment is 800W¡m ¡K [21]. -2
ced air cooling during solidification of ingot, evolutions of
steps are shown in Figure 11. It can be seen from the figure that the thermal resistance of the solidified shell is larger than that of other heat transfer section in the whole solidification process except in the initial stage of solidification.
The thermal resistance of the solidified shell is the inherent
characteristic of the ingot, which is not affected by external factors. Therefore, the solidification rate of the steel ingot is difficult to control.
-1
Fig.11 - Evolutions of the transient thermal resistances of different heat transfer steps when the cooling strength of the outer surface of the mold is forced air cooling during solidification of ingot La Metallurgia Italiana - maggio 2020
pagina 46
Scientific papers - Miscellaneous Based on the analyses of the thermal resistances of different heat transfer steps with different casting parameters, the thermal resistances of solidified shell are still dominant in the whole solidification process for 18-ton steel ingot with large ratio of height to diameter. Effect of Cooling Intensity on the Thermal Resistance Numerical simulations of solidification process of 18-ton steel ingot with a large ratio of height to diameter were investigated and the simulated results were verified by the measured temperatures and experimental sectioning investigation. The heat transfer characteristics during solidification of steel ingot with large ratio of height to diameter were dug out. The obtained results are summarized as follows: (1) The heat of molten steel is mainly transferred to the external environment through ingot body. (2) In the early stage of solidification, the thermal resistance of outer wall of mold is the largest among all heat
transfer sections. In the middle and late stages of solidification, the thermal resistance of the solidified shell is larger than that of other heat transfer sections, therefore, the heat transfer section of the solidified shell is the restrictive step of heat transfer. (3) The variation of pouring temperature does not change the restricted heat transfer section in the process of steel ingot solidification. (4) The outer surface of the mold is cooled by forced air can lead to that the thermal resistance of the solidified shell is larger than that of other heat transfer section in the whole solidification process except in the initial stage of solidification. (5) The heat transfer of solidified shell is the main restrictive step of heat transfer in the whole solidification process for 18-ton steel ingot with large ratio of height to diameter.
REFERENCES [1]
C. Liu, Aeron. Manuf. Technol, The role and prospect of modeling and simulation in equipment manufacturing, Aeron. Manuf. Tech-
[2
D. Z. Li, J. Campbell, Y.Y. Li, Filling system for investment cast Ni-base turbine blades, J Mater Procss Tech.148(2014)310-316.
[3] [4] [5] [6] [7]
[8] [9]
[10] [11] [12]
[13] [14] [15] [16] [17]
[18] [19] [20] [21]
nol. 3(2008)26-29.
B. H. Hu, K. K.Tong , X. P. Niu , Design and optimization of runner and gating systems for the die casting of thin-walled magnesium telecomunication parts through numerical simulation, J Mater. Procss Tech. 105(2000)128-133.
M.Heidarzadeh, H.Keshmiri, Influence of mould and insulation design on soundness of tool steel ingot by numerical simulation, J Iron Steel Res. Int. 20(2013)78-83.
Z. Radovic, M. Lalovic, Numerical simulation of steel ingot solidification process, J Mater Procss Tech. 160(2005)156-159.
C.J. Zhang, Y.P. Bao, M. Wang, Influence of cooling condition on solidification of large steel ingot, Metall Ital. 1 (2016)37-44.
J. Wang, P. Fu, H. Liu, D.Z. L, Shrinkage porosity criteria and optimized design of a 100-ton 30Cr 2Ni4MoV forging ingot, Mater.Design, 35(2012)446-456.
M. C. Flemings, G. E. Nereo, Macrosegregation: Part I, Trans. Mater. AIME, 239(1967)1449-1461.
M. C. Flemings, R. Mehrabian, G. E. Nereo, Macrosegregation: Part II, Trans. Mater. AIME, 242(1968)41-49. M. C. Flemings, G. E. Nereo, Macrosegregation: Part III, Trans. Mater. AIME, 242(1968)50-55.
R.Mehrabian, M. Keane, Interdendritic fluid flow and macrosegregation; influence of gravity, Metal Mater Trans, 5 (1970)1209-1220.
W. S.Li, H. F. Shen, B. C. Liu, Three-dimensional Simulation of Thermosolutal Convection and Macrosegregation in Steel Ingots, Steel Res. Int. 81(2010)994 -1000.
W. S.Li, H.F. Shen, B.C. Liu, Numerical simulation of macrosegregation in steel ingots using a two-phase model, Int J Min Met. Mater, 19(2012)787-794.
W.Tu ,Z.Duan , B.Shen ,Three-dimensional simulation of macrosegregation in a 36-ton steel ingot using a multicomponent multiphase model, JOM. 68(2016)3116-3125.
M.Wu, A. Ludwig, A. Kharicha, A four phase model for the macrosegregation and shrinkage cavity during solidification of steel ingot ,Appl Mathe Model.41 (2016)102-120.
K. Ho, R. D. Pehlke, Mathematical modeling of porosity formation in solidification, Mater Metall Mater.Trans.B.16(1985)359-366.
Nishida. Y, Droste. W, Engler. S,The air-gap formation at the casting-mold interface and the heat transfer mechanism through the gap, Metall Mater.Trans.B, 17(1986)833-844.
P. Lan, J. Q. Zhang, Numerical analysis of interfacial heat transfer coefficient during large steel ingot solidification, J. Iron Steel Res.26(2014)29-36.
Z. Liu, Y. Zhao, Y. Zhang, Prediction of temperature distribution and porosity and shrinkage cavity formation during solidification of large steel ingots, J. Iron Steel Res. (Peopleâ&#x20AC;&#x2122;s Republic of China) 5 (1993)23-32.
C.J.Zhang, Y.P. Bao, Study of effective transient thermal resistances of different heat transfer sections during solidification of steel ingot, Steel Res. Int. 88(2017)1-9.
X. G.Ai, S. L. Li , N.Lv, Solidification simulation of huge rectangular ingot by different intensive cooling,Adv. Mater. Res.295(2011) 685688.
La Metallurgia Italiana - May 2020
pagina 47
Attualità industriale - Miscellanea
Il nuovo acciaio da utensile da lavorazione a caldo THERMODUR E40K SUPERCLEAN a cura di: E. Prati, A. Magistrelli - B.A Bonomi Acciai S.r.l
Al fine di prolungare la vita utile degli stampi di pressocolata e migliorare le proprietà di stabilità alle alte temperature unita all'elevata tenacità, Deutsche Edelstahlwerke ha sviluppato il nuovo acciaio per utensili a caldo Thermodur E 40 K Superclean (rifuso sotto elettro-scoria). Thermodur E 40 K Superclean è stato sviluppato appositamente per gli stampi di pressocolata per soddisfare i più elevati requisiti di resistenza alla fatica termica, tenacità alle temperature elevate e resistenza all'usura a temperature elevate. Rispetto ai gradi convenzionali di acciaio H11 e H13, Thermodur E 40 K Superclean mostra una straordinaria combinazione di stabilità alla temperatura e tenacità anche ad alte temperature. Queste proprietà rendono questo grado particolarmente adatto per stampi per pressofusione altamente sollecitati, stampi per estrusione e forgiatura. Nel presente studio sono state studiate le proprietà selezionate (ad es. Tenacità Charpy-V a temperature elevate, resistenza agli shock termici e prova ad impatto con pendolo Charpy strumentato) del nostro nuovo acciaio per lavorazioni a caldo Thermodur E 40 K e sono state confrontate con i comuni gradi di acciaio H11 e H13.
KEYWORDS: ACCIAIO PER UTENSILI PER LAVORAZIONE A CALDO, THERMODUR E 40 K SUPERCLEAN, SPECIFICA NADCA#207, TENACITÀ, PROVA A IMPATTO STRUMENTATA, FATICA TERMICA, TRATTAMENTO TERMICO, COMPORTAMENTO ALLA TEMPRA, PROPRIETÀ FISICHE, PRESSOCOLATA, MICROSTRUTTURA Introduzione
La richiesta di materiali adatti per componenti di presso-
colata è ancora in aumento. Uno dei parametri essenziali
di un’attrezzatura di pressocolata è la sua durata utile, che descrive il numero di componenti prodotti con lo stampo
prima della sua avaria. La vita utile può essere incrementata grazie all’impiego di un materiale che esibisce buona sta-
Articolo presentato al NADCA di Indianapolis
Nell’80% dei casi, l’avaria degli stampi è causata dalla fatica
Deutsche Edelstahlwerke GmbH
bilità a caldo ed alta tenacità anche ad elevate temperature.
termica (Figura 1). La superficie del materiale di un componente di pressocolata subisce una permanente espan-
sione e contrazione durante l’esercizio, che è iniziato da
Dr.Till Schneiders
ed alla conferenza sugli utensili di Bratislava
Markus Gürcan
Deutsche Edelstahlwerke GmbH
un riscaldo e raffreddamento ciclico della superficie della
cavità durante l’iniezione della lega liquida. Ulteriori dettagli di questo meccanismo di avaria, descritti dalla co-
siddetta Teoria Kindbom, possono essere letti nella 1. La Figura 1 mostra i principali meccanismi di avaria di stampi di pressocolata 2,3.
La Metallurgia Italiana - maggio 2020
pagina 48
Industry news -Miscellaneous
Fig.1 - Meccanismi di Avaria di uno stampo di Pressocolata Ulteriori possibilità di avaria sono le cricche da tensionamen-
per estrusione e matrici per forgiatura.
(4%). Per soddisfare i requisiti derivanti dalle esigenze ope-
SCHEMA DEGLI ESPERIMENTI
Thermodur E 40 K Superclean. Thermodur E 40 K Supercle-
le dimensioni del nostro nuovo acciaio per utensili a caldo
to (9%), la corrosione (7%) e il washout / metallizzazione
rative è stato sviluppato il nuovo acciaio per utensili a caldo an mostra un’eccezionale combinazione di stabilità a caldo e
tenacità anche a temperature elevate, particolarmente adatta per matrici per pressofusione altamente sollecitate, matrici
Vengono mostrate in Tabella 1 le composizioni chimiche e
Thermodur E 40 K Superclean a confronto rispetto ai comuni acciai per utensili a caldo H11, H13 e 2367.
Tab.1 - Composizione chimica e dimensioni dei quattro acciai per utensili a caldo studiati.
L’analisi chimica del nostro nuovo acciaio per utensili per
un contenuto di molibdeno dell’1,8% del nostro E 40 K è
Thermo-Calc. La Figura 2 mostra la precipitazione dei diversi
con le temperature di austenitizzazione tipiche di un ciclo di
lavorazione a caldo è stata sviluppata utilizzando il software carburi sull'asse del molibdeno nello stato di equilibrio. Con
possibile riportare in soluzione i carburi secondari precipitati tempra ottimale.
Fig.2 – Diagramma di equilibrio del Molibdeno
La Metallurgia Italiana - May 2020
pagina 49
Attualità industriale - Miscellanea Al fine di migliorare la tenacità, il Thermodur E 40 K Super-
alte temperature. Tutti gli elementi rivelano un contenuto
e -Cr (elementi formanti carburi) sono stati progettati per
tre, Thermodur E 40 K Superclean mostra un basso conte-
clean ha un basso contenuto di Si. I materiali base -Mo, -V
ottenere una qualità premium con proprietà superiori alle
costante su tutta la sezione trasversale (Figura 3 e 4). Inolnuto di elementi di lega secondari.
Fig.3 – Omogeneità Macroscopica
Fig.4 – Omogeneità Microscopica Il Thermodur E 40 K Superclean è rifuso sotto elettro-sco-
rie e trattato termicamente in accordo alla specifica NA-
DCA #207-2015. Tutti i campioni sono stati bonificati nell’intervallo di durezza di 45±1 HRC. La microstruttura, la micropulizia e la dimensione del grano sono state valutate secondo la specifica NADCA #207-2015. TENACITÀ
I test di tenacità sono stati eseguiti a temperatura ambiente
secondo le specifiche europee con campioni non intagliati con una dimensione di 7 mm x 10 mm x 55 mm e secondo
la specifica NADCA #207-2015 con campioni con intaglio a
“V” con una dimensione di 10 mm x 10 mm x 55 mm. Tutti i campioni sono stati prelevati in direzione trasversale (nella sezione di transizione Q27 o nella sezione centrale Q17).
La tenacità a temperatura elevata è stata studiata tra 100 °C e 600 °C, con incrementi di 100 °C, utilizzando campioni Charpy-V.
La Metallurgia Italiana - maggio 2020
PROVA AD IMPATTO CON PENDOLO CHARPY STRUMENTATO
Le prove di impatto strumentate sono state eseguite se-
condo la norma DIN EN 14556 utilizzando una macchina per prove di impatto con un’energia di impatto massima di
300 J. Tutti i test sono stati eseguiti a temperatura ambiente
utilizzando campioni non intagliati con una dimensione di 5 mm x 10 mm x 55 mm. Per la determinazione dell’inne-
sco della cricca e della propagazione della cricca i risultati sono stati rappresentati in diagrammi forza-deviazione. FATICA TERMICA
Il comportamento alla fatica termica è stato testato usando
la configurazione ciclica di riscaldamento e raffreddamen-
to in Figura 5. I campioni (50 mm x 55 mm x 10 mm) sono
stati prelevati dalla direzione trasversale dell’area di transizione del blocco. Al fine di evitare l’innesco di cricche a
causa di scanalature di rettifica, i campioni sono stati retti-
pagina 50
Industry news -Miscellaneous ficati con una rugosità superficiale di max. 5 μm. I campioni
gas inerte (argon). I test sono stati impostati a 2000, 4000,
650 °C per induzione ad alta frequenza per quattro secondi
stati caratterizzati dal numero di cricche, dalla lunghezza
sono stati fissati su una ruota (Figura 5) e riscaldati fino a e successivamente raffreddati in una vasca acqua, che ave-
va una temperatura costante di 60 °C. Per evitare l’ossidazione, la struttura sperimentale chiusa è stata riempita con
6000 e 8000 cicli. I risultati dei test di fatica termica sono massima delle cricche e dalla lunghezza totale delle cricche. Ulteriori dettagli di questo test sono descritti in 4,5.
Fig.5 - Installazione sperimentale per testare il comportamento a fatica termica. TRATTAMENTO TERMICO
La Figura 6 mostra il diagramma di trasformazione a raf-
freddamento continuo CCT del Thermodur E 40 K. Il com-
portamento è simile a H11, quindi è garantita la penetrazione di tempra di grandi sezioni trasversali.
Fig.6 - Diagramma di Trasformazione a raffreddamento continuo (CCT) COMPORTAMENTO AL RINVENIMENTO
perclean si verifica a 525 °C, la durezza ammonta a 53 HRC.
Thermodur E 40 K Superclean rispetto al comportamento
Superclean può essere paragonato al comportamento al
La Figura 7 mostra il comportamento al rinvenimento del al rinvenimento dei tre comuni acciai per utensili a caldo. Il
picco di indurimento secondario di Thermodur E 40 K Su-
La Metallurgia Italiana - May 2020
Il comportamento al rinvenimento del Thermodur E 40 K rinvenimento del H11 (Figura 7).
pagina 51
Attualità industriale - Miscellanea
Fig.7 - Diagramma di Rinvenimento del Thermodur E 40 K Superclean. RISULTATI E DISCUSSIONE
°C). A 20 °C la conducibilità termica ammonta a 28,3 W/m
Le proprietà fisiche della condizione bonificata (45±1 HRC)
valore massimo di 31 W/m K (300°C) e successivamente
PROPRIETÀ FISICHE
sono elencate in Tabella 2. Il coefficiente di dilatazione ter-
mica aumenta all’aumentare della temperatura da 11,5 K-1
(20 °C - 100 °C) a 13,2 K (20 °C- 600 °C) mentre la densi-1
tà diminuisce (da 7,79 kg/dm a 20 °C a 7,61 kg/dm a 600 3
3
K. Innanzitutto la conducibilità termica aumenta fino a un diminuisce a 27,8 W/m K (600°C). Per quanto riguarda que-
ste proprietà fisiche ci sono solo piccole differenze tra il
Thermodur E 40 K Superclean e i comuni acciai per utensili a caldo.
Tab.2 - Coefficiente di dilatazione termica, conducibilità termica e densità del Thermodur E 40 K Superclean a diverse temperature in condizione di bonificato.
MICROSTRUTTURA
Il Thermodur E 40 K Superclean presenta una microstruttura e macrostruttura omogenee sull’intera sezione tra-
sversale. La microstruttura ricotta è costituita da una matrice ferritica con una omogenea distribuzione di carburi
sferoidali. La microstruttura allo stato ricotto del Thermodur E 40 K Superclean è priva di bandosità eccessiva in conformità con la tabella di riferimento per la segregazio-
La Metallurgia Italiana - maggio 2020
ne delle bandosità NADCA per livelli di microbandosità e segregazione microchimica e può quindi essere classificata come accettabile. I requisiti per il materiale rifuso sotto
elettro-scorie, a livello di micropurezza, sono stati sod-
disfatti in conformità alla ASTM E45. Entrambe, struttura ricotta e struttura bonificata del Thermodur E 40 K Superclean, sono mostrate nella Figura 8.
pagina 52
Industry news -Miscellaneous
Fig.8 - a) Microstruttura ricotta e b) Microstruttura bonificata di Thermodur E 40 K Superclean. PROVA DI TRAZIONE
ratura ambiente Rm è pari a 1480 MPa e Rp0.2 è pari a 1270
mento Rp0.2 e la riduzione dell’area Z in funzione della tempe-
riduzione dell’area è dal 47% al 52% nella zona centrale e dal
La Figura 9 mostra la trazione Rm e la resistenza allo snerva-
ratura. Mentre Rm e Rp0.2 diminuiscono con l’aumentare della
temperatura, Z aumenta con temperature elevate. A tempe-
MPa indipendentemente dalla posizione del campione. La 56% al 58% nella zona esterna.
Fig.9 - Risultati delle prove di trazione di Thermodur E 40 K Superclean. TENACITÀ
trale. Considerando i risultati del test di impatto strumentato
vorazione a caldo mostrano un comportamento di tenacità
dei quattro acciai per utensili a caldo esaminati nei diagram-
A temperatura ambiente, i quattro acciai per utensili da la-
paragonabile relativamente al test Charpy-V. Il Thermodur E 40 K Superclean mostra valori di circa 20 J nella sezione cen-
ci sono differenze significative. La Figura 10 mostra i risultati
mi forza-deviazione. Le energie massime di impatto relative sono riportate in alto a destra in ciascun diagramma.
Fig.10 - Diagrammi di forza-deviazione misurati in prove ad impatto con pendolo Charpy strumentato per a) Thermo-
dur E 40 K Superclean, b) H11, c) H13 e d) 2367. Tutti i campioni testati sono stati prelevati dal cuore (Q17). L’energia di impatto assorbita è mostrata in alto a destra in ogni diagramma.
La Metallurgia Italiana - May 2020
pagina 53
Attualità industriale - Miscellanea Si può vedere che Thermodur E 40 K Superclean (152 J)
rapida crescita delle microcricche)6. Il Thermodur E 40 K
ha la massima tenacità seguita da H11 (136 J) > 2367 (112
Superclean ed il H11 mostrano una migliore resistenza alla
J) > H13 (92 J). Tutti gli acciai dissipano solo una piccola
propagazione delle cricche rispetto agli acciai H13 e 2367.
quantità dell’assorbimento di energia per l’innesco della
La Figura 11 mostra i risultati delle prove di tenacità a tem-
cricca (parte elastica lineare, parte elasto-plastica lineare e
perature elevate fino a 600 °C per gli acciai studiati. La tena-
parte plastica non lineare dei diagrammi), la frazione prin-
cità del Thermodur E 40 K Superclean (Figura 7a) aumenta
cipale dell’assorbimento di energia viene dissipata duran-
con l’aumentare della temperatura fino a 500 °C dove rag-
te la propagazione della cricca (area di caduta del carico e
giunge un livello di tenacità massimo di ≈82 J.
Fig.11 - Tenacità (Charpy-V) in funzione della temperatura per a) Thermodur E 40 K Superclean, b) H11, c) H13 e d) 2367. RESISTENZA ALLA FATICA TERMICA
teriali studiati: Thermodur E 40 K Superclean, H11, H13 e
dal riscaldamento e dal raffreddamento nel test di fatica
modur E 40 K Superclean è meno suscettibile alla forma-
Il cambio periodico di tensione e compressione causato
termica porta a una rete di cricche. La Figura 12 mostra la comparsa di cricche a caldo dopo 4000 cicli per tutti i ma-
2367. Rispetto ai comuni acciai per utensili a caldo, il Therzione di cricche da fatica termica (Figura 12a).
Fig.12 - Microstruttura di a) Thermodur E 40 K Superclean, b) H11, c) H13 e d) 2367 dopo 4000 cicli nel test di fatica termica. La resistenza al controllo del calore è stata studiata attra-
sistenza alla fatica termica. La Figura 13a mostra la massima
le lunghezze delle cricche dopo 4000 cicli. In questo con-
mero totale delle cricche in funzione del numero di cicli,
verso la massima lunghezza della cricca e sommando tutte testo: minore è la lunghezza della cricca, maggiore è la re-
La Metallurgia Italiana - maggio 2020
lunghezza della cricca e la Figura 13b la lunghezza del nuche è stato diversificato tra 2000, 4000, 6000 e 8000.
pagina 54
Industry news -Miscellaneous
Fig.13 - a) Massima lunghezza della cricca e b) lunghezza totale delle cricche di Thermodur E 40 K Superclean, H11, H13 e 2367 dopo 2000, 4000, 6000 e 8000 cicli nel test di fatica termica.
Soprattutto dopo 6000 e più cicli termici, il nuovo acciaio per utensili a caldo Thermodur E 40 K Superclean mostra
una lunghezza della cricca totale inferiore rispetto agli acciai comuni (vedi Figura 13b). È ben noto che il comportamento alla fatica termica è influenzato tra l’altro da due effetti opposti. L’innesco della cricca ha avvio sotto un ca-
rico ciclico quando il limite di snervamento viene superato localmente. Le prime cricche compaiono, ad esempio, in
corrispondenza di inclusioni non metalliche o carburi eutettici . Questo effetto può essere ritardato da un’elevata 2,6
durezza, ma ciò è limitato dalla perdita di tenacità e dal rischio di rottura. Una volta innescata la cricca, è utile che l’utensile presenti una buona resistenza alla propagazione
della cricca. Poiché la fatica termica nella pressofusione è imprevedibile, è molto utile rallentare la propagazione delle cricche mediante una buona combinazione di stabi-
lità alle alte temperature e tenacità per utensili altamente
sollecitati. La maggiore resistenza di Thermodur E 40 K Superclean rispetto alle altre qualità contro le cricche da fatica termica deriva dalla maggiore tenacità alla durezza data di 45±1 HRC.
CONCLUSIONI E PROSPETTIVE
Al fine di aumentare la durata degli utensili da lavorazione a caldo, è consigliabile considerare che ci sono molte applicazioni diverse che richiedono diverse proprietà dell’ac-
ciaio. Gli acciai per utensili per stampi di pressocolata richiedono una buona resistenza alla fatica termica, il che
La Metallurgia Italiana - May 2020
può essere ottenuto grazie ad una buona combinazione di
stabilità alle alte temperature e tenacità per utensili altamente sollecitati.
Esistono diversi approcci per misurare la tenacità. Il valore ottenuto nel test Charpy-V è un valore integrale dell’inne-
sco della cricca e della propagazione della cricca, il volu-
me testato e la zona deformata plasticamente sono piuttosto grandi. Questo test fornisce informazioni non isolate
circa la propagazione della cricca e c'è solo un riflesso limitato del carico nella prassi industriale. La tenacità come
resistenza alla propagazione delle cricche può essere determinata mediante il test di impatto strumentato. I dia-
grammi forza-deviazione mostrano che Thermodur E 40 K Superclean mostra un’ottima tenacità e resistenza contro la propagazione delle cricche. Lo stesso vale per i risultati
del test di fatica termica. Una volta innescata la cricca, la crescita è determinata dalla capacità del materiale di resistere a questa crescita, ovvero il livello di tenacità. Contra-
riamente al test Charpy-V, il volume testato in prossimità
dell’estremità della cricca è molto piccolo, il che riflette le esigenze operative nel processo di pressofusione.
Thermodur E 40 K Superclean mostra la più corta lunghezza massima della cricca così come la minore lunghezza
totale delle cricche. Ciò approva i risultati della prova di impatto strumentata e sottolinea l’eccellente idoneità di
questo acciaio per applicazioni che richiedono una buona tenacità.
pagina 55
Attualità industriale - Miscellanea RIFERIMENTI [1]
Kindbom, L., Warmrissbildung bei der Temperaturwechselbeanspruchung von Warmarbeitswerkzeugen, Arch. Eisenhüttenwesen, vol. 35, n. 8 (1964).
[2]
Berns, H., Beispiele zur Schädigung von Warmarbeitswerkzeugen, Z. Werkst. Wärmebeh. Fertigung, vol. 59, n. 6 (2004).
[3]
Tang, C., Jahedi, M. Z., Brandt, M., Indagine sulla reazione di saldatura nella pressofusione di magnesio ad alta pressione, in: L’uso di acciai per utensili, esperienza e ricerca, Proc. 6th Int. Conf. Utensili Universität Karlstad, Schweden, pagg. 137-146 (2002).
[4]
Malm, S., Svensson, J., Tidlund, J., Controllo del calore negli acciai per lavori a caldo, 2 ° Int. Colloquio su acciai per utensili per lavorazione a caldo, cercle d’Etudes des Metaux, Saint-Etienne (1977).
[5]
Ehrhardt, R., Fuchs, K.-D., Miglioramento delle caratteristiche di controllo del calore di AISI H13 mediante modifica della composizione chimica, in: Die Casting of Heartland, 22th Internat. Die Casting Congress & Exposition, Indianapolis, Stati Uniti (15-18 settembre 2003).
[6]
Roberts, G., Krauss, G., Kennedy, R., Tool Steels, 5a edizione, ASM International (1998).
[7]
Wellinger, K., Pröger, M., Vasoukis, G., Kraft- und Wegmessungen als Grundlage für das Verständnis des Kerbschlagbiegeversuchs, Z. f. Werkstofftechnik / J. of Materials Technology, vol. 4, n. 1 (1973).
La Metallurgia Italiana - maggio 2020
pagina 56
Industry news -Miscellaneous
FaReTra FaReTra
Fair Remote Training
EE V I OL
E I G
O L O
N C TE
La Metallurgia Italiana - May 2020
O NT
N CI
E
V AV DI
I ON
AL
AL ID
4
I DD
EA
O
GN
20
20
U GI
IL
IB
N PO
CN TE
VE
TI
I OG OL
LE
I
O
P
A AM
RS
CO ER
ITPILL D D IN
S
DI
ZI
LE
pagina 57
Scenari - Miscellanea
LA METALLURGIA NEI GRANDI POEMI DELL’ANTICHITÁ a cura di: Giuseppe G. Casarini – Binasco (MI) La nascita della metallurgia: la lavorazione dei metalli e
come mette in evidenza Lucrezio i tempi cambiano :”/Ora
l’uso dei metalli
è trascurato il rame, l'oro è asceso al più alto onore./Così il
Il poeta latino Tito Lucrezio Caro ( 98-54 A.C.) nel suo De
volgere del tempo tramuta le stagioni delle cose:/ciò che
Rerum Natura (13), fedele al pensiero di Epicuro e par-
era in pregio, diventa alfine di nessun valore;/”…
tendo dall’analisi delle particelle minime ed indivisibili, gli atomi, ed analizzando i processi della conoscenza umana
Usura e corrosione dei metalli
ed i meccanismi che presiedono ai fenomeni naturali, ci
L’osservazione di Lucrezio sui metalli e sul loro decadi-
introduce, poeticamente nel Libro V alla nascita della me-
mento con specifico riferimento alla concezione atomisti-
tallurgia ed alla lavorazione dei metalli.:
ca delle cose, si fa ancora e più profonda ( Libro I) : qualsi-
”Comunque sia, quale che fosse la causa per cui l'ardore/
asi sia la natura del metallo o della lega: oro, ferro, bronzo,
delle fiamme aveva divorato con orrendo fragore le selve/
al pari delle pietre, tutto ciò, con l’impiego e nel tempo, si
dalle profonde radici e aveva cotto a fondo col fuoco la
usura e si corrode senza che noi ne possiamo conoscerne
terra,/colavano dalle vene bollenti confluendo nelle ca-
il perché:
vità della terra/rivoli d'argento e d'oro e anche di rame e
“Per di più, nel corso di molti anni solari l'anello,/a forza
di piombo./E quando gli uomini li vedevano poi rappresi/
d'essere portato, si assottiglia dalla parte che tocca il dito;/
risplendere sul suolo di lucido colore,/li raccoglievano,
lo stillicidio, cadendo sulla pietra, la incava; il ferreo vome-
avvinti dalla nitida e levigata bellezza,/e vedevano che era-
re/adunco dell'aratro occultamente si logora nei campi;/e
no foggiati in forma simile a quella/che aveva l'impronta
le strade lastricate con pietre, le vediamo consunte/dai
dell'incavo di ognuno./Allora in essi entrava il pensiero che
piedi della folla; e poi, presso le porte, le statue/di bronzo
questi, liquefatti al calore,/potessero colando plasmarsi in
mostrano che le loro mani destre si assottigliano/al tocco
qualsiasi forma e aspetto di oggetti,/e che martellandoli si
di quelli che spesso salutano e passano oltre./Che queste
potesse forgiarli in punte di pugnali/quanto mai si volesse
cose dunque diminuiscano, noi lo vediamo,/perché son
acute e sottili,/sì da procurarsi armi e poter tagliare selve/
consunte. Ma quali particelle si stacchino in ogni/momen-
ed asciare il legname e piallare e levigare travi/ed anche
to, l'invidiosa natura della vista ci precluse di vederlo./“
trapanare e trafiggere e perforare/. Riciclaggio Le proprietà dei metalli
Virgilio, nel Libro VII dell’Eneide, ci offre un saggio poeti-
Di seguito e sempre nel Libro V, Lucrezio mette in eviden-
co sui riciclaggi del ferro e dell’acciaio: il nemico incombe
za come, dopo la scoperta della metallurgia, gli uomini
e bisogna difendersi : attrezzi agricoli e mezzi per disso-
abbiano imparato a conoscerne subito le caratteristiche e
dare il terreno vengono rifusi e trasformati sotto forma di
l’utilità:
armi e di corazze:
“E dapprima s'apprestavano a far queste cose con l'argen-
“Cinque grosse città con mille incudi/ a fabbricare, a risar-
to e l'oro/non meno che con la forza violenta del possente
cir si dànno/ d'ogni sorte armi: la possente Atina,/ Ardea
rame,/ma invano, poiché la tempra di quelli vinta cedeva,/
l'antica, Tivoli il superbo,/ e Crustumerio, e la torrita An-
né potevano sopportare ugualmente il duro sforzo./Difatti
tenna./ Qui si vede cavar elmi e celate;/ là torcere e covrir
‹il rame› era più pregiato e l'oro era trascurato/per l'inu-
targhe e pavesi:/per tutto riforbire, aüzzar ferri,/ annestar
tilità, perché si smussava con la punta rintuzzata./” ma,
maglie, rinterzar corazze,/ e per fregiar piú nobili armatu-
La Metallurgia Italiana - maggio 2020
pagina 58
Experts’ Corner - Miscellaneous
re,/ tirar lame d'acciar, fila d'argento./ Ogni bosco fa lance,
e leghe/ in piú guise si fan d'ogni metallo./ Di sette falde
ogni fucina/ disfà vomeri e marre, e spiedi e spade/ si for-
in sette doppi unite,/ ricotte al foco e ribattute e salde,/ si
man dai bidenti e da le falci.”/
forma un saldo e smisurato scudo,/ da poter solo incontro a l'armi tutte/ star de' Latini. Il fremito del vento /che
Sfolgoranti descrizioni
spira da' gran mantici, e le strida/ che ne' laghi attuffati, e
Omero (IX sec. A.C.), nell’Iliade come nell’Odissea e pa-
ne l'incudi/ battuti, fanno i ferri, in un sol tuono/ ne l'antro
rimenti Virgilio, nell’Eneide, quasi gareggiando tra di loro,
uniti, di tenore in guisa /corrispondono a' colpi de' Ciclo-
ci offrono a profusione, “forgiando” indimenticabili versi,
pi,/ ch'al moto de le braccia or alte or basse/ con le tena-
una sfolgorante descrizione di metalli in varie forme e dal-
glie e co' martelli a tempo fan concerto, armonia, numero
le fogge e decorazioni le più diverse: armi, scudi, cocchi
e metro/”
divini, vasellame, suppellettili, abitazioni, strumenti musicali; per brevità ci si dovrà limitare solo ad alcuni rimandi: al lettore diligente la voglia ed il compito di dar seguito
Una profusione di oggetti metallici
a personali approfondimenti.
Poi in un crescendo di citazioni, sia in Omero che in Virgilio, appaiono magnifiche descrizioni di: cocchi divini, va-
Gli scudi di Achille e di Enea
sellame, suppellettili, abitazioni, strumenti musicali:
Di seguito sono riportati i versi che descrivono il lavoro di Efesto-Vulcano nell’atto di forgiare, su richiesta di Teti,
Iliade
la madre di Achille, il nuovo scudo del Pelide dopo che
Nel bel mezzo della battaglia tra Achei e Troiani, ecco in-
quello indossato in sua vece da Patroclo era stato preda di
tervenire in aiuto dei due schieramenti, alcune divinità ar-
Ettore a seguito dell’uccisione del fraterno amico.
mate di tutto punto (Iliade-Libro V):
”Eran venti che dentro la fornace/per venti bocche ne
“Immantinente al cocchio Ebe le curve/ruote innesta. Un
venìan soffiando,/e al fiato, che mettean dal cavo seno,/or
ventaglio apre ciascuna/d'otto raggi di bronzo, e si rivolve/
gagliardo or leggier, come il bisogno/chiedea dell'opra e
sovra l'asse di ferro. Il giro è tutto/d'incorruttibil oro, ma
di Vulcano il senno,/sibilando prendea spirto la fiamma./In
di bronzo/le salde lame de' lor cerchi estremi./Maraviglia
un commisti allor gittò nel fuoco/argento ed auro prezïoso
a veder! Son puro argento/i rotondi lor mozzi, e vergola-
e stagno/ed indomito rame. Indi sul toppo/locò la dura ri-
te/d'argento e d'ôr del cocchio anco le cinghie/con am-
sonante incude,/di pesante martello armò la dritta,/di ta-
bedue dell'orbe i semicerchi,/a cui sospese consegnar le
naglie la manca; e primamente/un saldo ei fece smisurato
guide./Si dispicca da questo e scorre avanti/pur d'argento
scudo/di dèdalo rilievo, e d'auro intorno/tre ben fulgidi
il timone, in cima a cui/Ebe attacca il bel giogo e le leg-
cerchi vi condusse,/poi d'argento al di fuor mise la soga./
giadre/pettiere; e queste parimenti e quello/d'auro sono
Cinque dell'ampio scudo eran le zone,/ (14 )
contesti. Desïosa/Giuno di zuffe e del rumor di guerra,/gli
Non da meno è l’abilità poetica di Virgilio, nell’VIII libro
alipedi veloci al giogo adduce./Né Minerva s'indugia. Ella
dell’Eneide, nel descrivere il lavoro dei Ciclopi, intenti nel-
diffuso/il suo peplo immortal sul pavimento/delle sale pa-
le nere fucine etnee del dio Vulcano, a forgiare , su richie-
terne, effigïato/peplo, stupendo di sua man lavoro,/e ve-
sta di Pallade-Atena, le armi di Enea:
stita di Giove la corazza/di tutto punto al lagrimoso ballo/
“Tosto che giunse: «Via, - disse a' Ciclopi -/ sgombrate-
armasi. Intorno agli omeri divini/pon la ricca di fiocchi Egi-
vi davanti ogni lavoro,/ e qui meco guarnir d'arme atten-
da orrenda,/che il Terror d'ogn'intorno incoronava/”
dete/ un gran campione. E s'unqua fu mestiero/ d'arte, di sperïenza e di prestezza,/ è questa volta. Or v'accingete
Odissea
a l'opra/ senz'altro indugio». E fu ciò detto a pena,/ che,
Oro, argento, rame: questa l’offerta, segno dell’opulenza
divise le veci e i magisteri,/ a fondere, a bollire, a martel-
delle case di Ilio, di un prigioniero troiano onde aver salva
lare/ chi qua chi là si diede. Il bronzo e l'oro /corrono a
la vita come descritto nel libro VII:
rivi; s'ammassiccia il ferro,/ si raffina l'acciaio; e tempre
“L'aggiungono anelanti i due guerrieri,/l'afferrano alle
La Metallurgia Italiana - May 2020
pagina 59
Scenari - Miscellanea
mani, ed ei piangendo/grida: Salvate questa vita, ed io/ri-
mide coverto,/Sovra un distinto d'argentini chiovi/Seggio
scatterolla. Ho gran ricchezza in casa/d'oro, di rame e la-
a grand'arte fatto, e vago assai,/Mi pose: lo sgabello i piè
vorato ferro./Di questi il padre mio, se nelle navi/vivo mi
reggea/.E un'altra ninfa da bel vaso d'oro/Purissim'acqua
sappia degli Achei, faravvi/per la mia libertà dono infinito.”
nel bacil d'argento/“
Sempre nello stesso libro:“Palagio chiara, qual di sole
o luna,/Mandava luce. Dalla prima soglia Sino al fondo
Eneide
correan due di massiccio/Rame pareti risplendenti, e un
E non da meno, come descrizioni di opulenza e di splen-
fregioDi ceruleo metal girava intorno./Porte d'ôr tutte la
dori metallici, risultano questi vrsi tratti dal libro II dell’E-
inconcussa casaChiudean: s'ergean dal limitar di bronzo/
neide:
Saldi stìpiti argentei, ed un argenteo Sosteneano architra-
“Poscia che ciò come profeta disse,/ comandò come ami-
ve, e anello d'oro/Le porte ornava; d'ambo i lati a cui,Sta-
co ch'a le navi/ gli portassero i doni, opre e lavori/ ch'avea
van d'argento e d'ôr vigili cani:/Fattura di Vulcan, che in lor
d'oro e d'avorio apparecchiati/, e gran masse d'argento
ripose” … “Canto arricchillo. Il banditor nel mezzo/Sedia
e gran vaselli /di dodonèo metallo: una lorica/ di forbite
d'argento borchiettata a lui/Pose, e l'affisse ad una gran
azzimine; e rinterrate/ maglie, dentro d'acciaro e 'ntorno
colonna:/Poi la cetra vocale a un aureo chiodo/Gli appese
d'oro/, una targa, un cimiero, una celata,/ ond'era a pompa
sovra il capo, ed insegnagli/,Come a staccar con mano indi
ed a difesa armato/ Nëottòlemo altero”.
l'avesse.” Ecco, nel libro X dello stesso poema, la munificenza di oro, argento, bronzo, che arreda le maritali stanze della maga Circe dove Ulisse riprende le vigorose forze:
“Bei tappeti di porpora, cui sotto/Bei tappeti mettea di bianco lino:/L'altra mense d'argento innanzi ai seggi/Spiegava, e d'oro v'imponea canestri:/Mescea la terza nell'argentee brocche/Soavissimi vini, e d'auree tazze/Coprìa le mense: ma la quarta il fresco/Fonte recava, e raccendea gran fuoco/Sotto il vasto treppié, che l'onda cape./Già fervea questa nel cavato bronzo,/E me la ninfa guidò al bagno, e l'onda/Pel capo mollemente e per le spalle/Spargermi non cessò, ch'io mi sentii/Di vigor nuovo rifiorir le
CONCLUSIONI La letteratura della classicità greco-latina, come messo in evidenza, offre un immenso tesoro di riferimenti alla metallurgia ed alla lavorazione dei metalli: metalli come simbolismo tra dei, miti e leggende, suggestivi versi sull’origine della metallurgia, sull’impiego e l’uso dei metalli, le loro proprietà, l’usura, la corrosione, il riciclaggio, nonché sfolgoranti descrizioni e una profusione di oggetti metallici. Ai poemi cavallereschi della letteratura italiana, se ci sarà, il prossimo appuntamento a cominciare dal Tasso e dall’Ariosto.
membra./Lavato ed unto di licor d'oliva,/E di tunica e cla-
La Metallurgia Italiana - maggio 2020
pagina 60
Experts’ Corner - Miscellaneous BIBLIOGRAFIA [1]
G. Casarini :” Riferimenti ad arti e mestieri alchemici metallurgici nella Divina Commedia: Fabbri e Ferraioli”-28° Convegno Nazionale A.I.M.-Milano Novembre 2000-Atti-Vol.2-pagg 635-541
[2]
G.Casarini:” Metallurgia e scienza nei gironi danteschi”- Civiltà degli Inossidabili - Ediz. Trafilerie Bedini-Dic.1992
[3]
G. Casarini:” Dante Alighieri e la Metallurgia”- Pianeta Inossidabili-Ediz. Acciaierie Valbruna-Giu.1995
[4]
G. Cozzo:” Le origini della metallurgia-I metalli e gli dei”-Editore G.Biardi-1945 Roma
[5]
E. Crivelli:” La metallurgia degli antichi”-Supplem. Ann. Enciclopedia della Chimica-Unione Tipografica Editrice- 1913 Torino
[6]
I. Guareschi :”Storia della Chimica-I colori degli antichi”- ”-Supplem. Ann. Enciclopedia della Chimica-Unione Tipografica Editrice- 1905 Torino
[7]
A. Uccelli-G.Somigli:”Dall’alchimia alla chimica-Storia della Metallurgia e delle lavorazioni meccaniche nel medio-evo”-Enciclopedia storica delle scienze e loro applicazioni”-U. Hoepli Editore-Milano
[8]
Esiodo: “ Le opere e i giorni”-Trad. G. Arrighetti-Ediz.Garzanti-1985
[9]
Ovidio:” Metamorfosi”-Ediz.varie
[10]
Tibullo: “Elegie”_Ediz.varie
[11] Virgilio:”Eneide”-Trad.A.Caro-Ediz.varie [12]
Virgilio: “Bucoliche”-Trad. L.Canali-Fabbri Editori
[13]
Lucrezio: “De Rerum Natura”
[14]
Omero: “Iliade”-Trad. V.Monti-Ediz.varie
[15]
Omero: Odissea”-Trad.I.Pindemonte-Ediz.varie
[16]
T. Tasso: “ La Gerusaleme Liberata”-Ediz. varie
[17]
L. Ariosto: “ Orlando Furioso”-Ediz.varie
La Metallurgia Italiana - May 2020
pagina 61
Pubbliredazionale
BERGAMO . ITALY . 3-4 DECEMBER 2020
international
meeting
RAW
MATERIALS & RECYCLING
circular economy
sustainability metallurgical industry SCOPE
TOPICS
The environmental and economical sustainability of the metallurgical industry depends on the possibility to recover and recycle the metal products after their use. On the other hand, a new challenge is a zero-waste metallurgical process. Such an approach has to be faced from perspective involving commercial, economic and technical issues. Although recycling is an intrinsic feature of all the metallurgical processes, an efficient circular approach needs to take into account a correct selection and cleaning of the metallic and glassy-ceramic materials in order to allow their use in the process avoiding or limiting the exploitation and the consumption of the natural resources. Such a view imposes a multidisciplinary approach where the application of complex mechanical system, innovative chemical plants, electromagnetic devices, biotechnological techniques and managing algorithm even ruled by artificial intelligence have to be applied. An efficient action inspired to the circular economy has to take into account a comprehensive vision where the recycling is associated to an efficient material and energy exploitation that implies an overall decrease of the polluting elements and greenhouse gases. Complete informartion and forms are available at: www.aimnet.it/rawmat.htm
The Meeting will be performed through invited presentations and on the basis of the selection of the abstracts sent by authors and companies interested in sharing their updated knowledge on the following topics. The deadline for the abstract undergoing the selection is on June 5, 2020, in order to fulfill the final program. • • • • • • • • • • • • • • •
Scrap Scrap conditioning and management Recycling Tramp elements Slag recycling Slag valorization Recovery of valuable elements from wastes Recovery and recycling of the refractories Management of the oxide scales Treatment of dust Sludges Biometallurgy Biotechnological system for wate treatment Heat harvesting for material recovery CO2 capture and use
Organised by
In co-operation with
Patronized by
La Metallurgia Italiana - maggio 2020
pagina 62
Atti e notizie - AIM news
Eventi AIM / AIM events FaReTra (Fair Remote Training) - FORMAZIONE A DISTANZA ON DEMAND - lezioni registrate Corso ACCIAI AD ALTO CARBONIO Giornata di Studio TECNOLOGIA ED INNOVAZIONE NEI FORNI AD ARCO SIDERURGIA IN PILLOLE FAILURE ANALYSIS IN PILLOLE – percorso di avvicinamento alla Failure Analysis
www.aimnet.it
TECNOLOGIE ADDITIVE IN PILLOLE TECNOLOGIE PRESS & SINTER NON CONVENZIONALI
Per ulteriori informazioni rivolgersi alla Segreteria AIM, e-mail: info@aimnet.it, oppure visitare il sito internet www.aimnet.it
WEBINAR Giornata di Studio CORROSIONE SOTTO SFORZO E INFRAGILIMENTO DA IDROGENO NELLE APPLICAZIONI PETROLCHIMICHE > 26 giugno 2020 Giornata di Studio RIVESTIMENTI DECORATIVI AL SERVIZIO DELL'ESTETICA DEL PRODOTTO Corso METALLURGIA DI BASE PROPEDEUTICO AI TRATTAMENTI TERMICI > ottobre FORMAZIONE E AGGIORNAMENTO IN AULA (*) Giornata di Studio UTILIZZO LEGHE DI NICHEL IN SALDATURA > Milano, 7 ottobre Corso ANALISI CHIMICHE > Milano, 14-15 ottobre Giornata di Studio STAMPAGGIO: PROPRIETÀ MECCANICHE, TRATTAMENTO TERMICO E MECCANISMO DI DANNEGGIAMENTI > Ivrea c/o Confindustria Canavese, 22ottobre Corso GLI ACCIAI INOSSIDABILI > Milano, 28-29 ottobre e 4-5-10-11-18-19 novembre
L’elenco completo delle iniziative è disponibile sul sito: www.aimnet.it
(*) In caso non sia possibile svolgere la manifestazione in presenza, la stessa verrà erogata a distanza in modalità webinar
La Metallurgia Italiana - May 2020
pagina 63
save the date
High Tech Die Casting INTERNATIONAL C O N F E R E N C E VICENZA - ITALY 23-25 JUNE 2021
Organised by
Patronised by
will be held once in Vicenza, where the 1st HTDC Conference took place in 2002. Through the years, the HTDC Conference has grown and become a key-event for scientists and researchers from the foundry field of Aluminium, Magnesium and other non-ferrous alloys as well as for experts from the industry. The HTDC Conference series has been steadily growing in quality, impact and participation in the following conferences, organised in 2004, 2006, 2008, 2012 and 2016. The HTDC Conference is the meeting point for experts involved in the research activities and development of foundry technologies, processes or materials, as well as those employed by the foundry companies of light and non-ferrous alloys, and who are prepared to share some of their current experiences. Today, Die Casting production is facing new challenges: from eco-sustainability and efficient energy usage to optimisation of product properties and finishing, from tailored alloys’ properties to design of lightweight larger structural components. Only an “open-minded” approach, resulting in a high capability of being innovation-driven, integration-oriented and implementation-ready, will make Die Casting foundries successful in an international market dominated by strong competition. To sustain the competitiveness in Die Casting production, HTDC Conference will cover these key features: • innovations, from alloys to processes, from design to applications, which are available to foundries, suppliers, end-users; • multi-disciplinary integration of concepts, methods and processes; • implementation, into the industrial context, of new and modern solutions for quality, efficiency, high performance.
HTDC Conference again
Exhibition & Sponsorship Sponsored by
The HTDC Organising Committee has prepared a selection of sponsorship opportunities designed to increase the visibility and to optimize the return of investment for sponsors participating in the HTDC Conference. Complete informartion and forms are available at: www.aimnet.it/htdc.htm
Conference organisers Associazione Italiana di Metallurgia Via Filippo Turati 8 - 20121 Milano, Italy E-mail: info@aimnet.it www.aimnet.it/htdc.htm
Atti e notizie - AIM news
Comitati tecnici / Study groups CT CORROSIONE (C) (riunione 14 febbraio 2020)
Iniziative future • Per la prossima edizione delle “Giornate Nazionali sulla Corrosione e Protezione” (Torino, giugno-luglio 2021) si discute della possibile collaborazione con altre associazioni e dei possibili patrocini. Viene nominato il comitato scientifico, mentre la Segreteria provvederà a interpellare sia le persone che sono ancora nel CT Corrosione ma non partecipano da tempo che altri gruppi di ricerca in differenti sedi universitarie che si occupano di corrosione. • GdS “Corrosione sotto sforzo e infragilimento da idrogeno nelle applicazioni petrolchimiche”: questa manifestazione sarà organizzata in collaborazione con NACE Italia ed è già pronta una bozza di programma. La data, inizialmente ipotizzata per giugno 2020, sarà ridiscussa in funzione delle possibilità di organizzare riunioni. • Il CT “Controllo e caratterizzazione dei prodotti” aveva avanzato la richiesta di co-organizzare una giornata sul tema “Corrosione per non corrosionisti”. La proposta sarà valutata con maggiore attenzione da un comitato ristretto. Stato dell’arte e notizie • È stato invitato alla riunione un nuovo membro, poi ammesso al CT. • È stata confermata la volontà di dare un premio intitolato al prof. Francesco Mazza, da consegnare durante le Giornate Nazionali della Corrosione. L’ACI Italian Chapter ha assegnato un premio alla memoria del prof. Luca Bertolini, con il patrocinio di AIM.
CT METALLURGIA FISICA E SCIENZA DEI MATERIALI (MFM) (riunione telematica del 27 febbraio 2020)
Manifestazioni in corso di organizzazione • Dopo lunga discussione, il CT decide di organizzare una GdS dal titolo: “Resistenza a fatica dei materiali metallici: aspetti metallurgici ed approcci innovativi”; il previsto rifacimento del corso “Tenacità a fatica dei materiali metallici” viene così rimandato al 2021. La GdS viene fissata per il giorno 24 novembre 2020 a Milano. Il coordinatore Donnini preparerà a breve la locandina sulla base degli interventi già pianificati. Lo scopo è quello di approfondire le tematiche più critiche sull’argomento e aggiornare la situazione circa gli approcci sperimentali e di processo di più recente sviluppo. Nella mattinata saranno discussi gli aspetti ambientali e i fattori tecnologici determinanti per la valutazione e il miglioramento della resistenza a fatica di un materiale metallico. Nel pomeriggio si discuterà delle più rilevanti caratteristiche, opportunità e criticità di alcune leghe metalliche particolarmente utilizzate in ambito industriale, sottolineandone le funzionalità più utili ed innovative. Iniziative future • Il coordinatore Richetta aggiorna il CT circa l’organizzazione della GdS “Ingegnerizzazione delle superfici: design e caratterizzazione” in programma per fine giugno. Il presidente Cerri chiede di definire meglio i topics dell’evento perché le partecipazioni possano essere mirate al meglio. Bassani raccomanda di evitare sovrapposizioni di argomenti con GdS organizzate da altri CT.
CT METALLURGIA DELLE POLVERI E TECNOLOGIE ADDITIVE (MP) (riunione telematica del 01 aprile 2020)
Manifestazioni in corso di organizzazione • La GdS “Leghe per alte temperatura prodotte con tecnologia additive”, inizialmente programmata per il 17 marzo a Firenze, è stata spostata al 9 giugno, ma anche questa data sembra difficile da rispettare per via dell’inevitabile affollamento di persone che si verificherebbe. D’altra parte, il CT valuta un notevole punto di forza lo svolgimento di questa ed altre manifestazioni presso
aziende disposte ad ospitare l’evento. I coordinatori Biffi, Casati, Molinari, Ruggiero, insieme alla Segreteria AIM, verificheranno la possibilità di spostare la Giornata di Studio in autunno.
Iniziative future • Il Seminario in due giornate “Alfabetizzazione Additive e TT post-Additive”, in collaborazione con il CT Trattamenti Termici e Me-
La Metallurgia Italiana - May 2020
pagina 65
Atti e notizie - AIM news
Comitati tecnici / Study groups
•
tallografia” ha per coordinatori Vicario (da parte del CT MP) e Pellizzari (da parte del CT TTM). I rappresentanti delle ditte ospitanti concordano sull’opportunità di spostare l’evento da luglio 2020 a gennaio 2021: il programma dettagliato sarà quindi discusso nelle prossime riunioni. La GdS “Materiali innovativi per additive manufacturing” si potrà tenere presso CRF a Mirafiori spostando la data alla primavera 2021. I coordinatori Biffi e Casati sono incaricati di definire i dettagli del programma.
Stato dell’arte e notizie • Il CT approva l’ingresso di quattro nuovi membri, tutti provenienti dal mondo industriale.
CT METALLI E TECNOLOGIE APPLICATIVE (MTA) (riunione telematica del 21 aprile 2020)
Iniziative future • La GdS “Utilizzo leghe di nichel in saldatura” – coordinatori Colombari e Rossetti – è prevista per il 7 ottobre a Milano. L’organizzazione è a buon punto, ma la conferma della fattibilità della giornata si potrà dare solo dopo la prossima riunione del CT a giugno. • La GdS “Trattamenti per la rimozione del piombo per il riciclo degli ottoni” - coordinatore Loconsolo – è anch’essa a buon punto con la preparazione. La data resta fissata per il 4 novembre 2020, salvo conferma. La sede potrebbe essere Brescia, come inizialmente ipotizzato, ma sono aperte altre possibilità per diverse location.
Stato dell’arte e notizie • Durante la riunione è stata rinnovata la carica di presidente: al posto di Ezio Debernardi è stato eletto all’unanimità Vincenzo Loconsolo. Il mandato per la carica di segretario è stato riconfermato a Riccardo Gerosa, mentre il vicepresidente sarà eletto nella prossima riunione. • Un nuovo membro ha chiesto di partecipare al CT MTA ed è stato accettato.
CT CONTROLLO E CARATTERIZZAZIONE PRODOTTI (CCP) (riunione telematica del 29 aprile 2020)
Manifestazioni in corso di organizzazione • Il corso “Failure Analysis” (coordinatori Ferrari, Bisaglia, Rolli, Donnini), già previsto a Milano per maggio 2020, è stato rimandato ai primi mesi del 2021. Nel frattempo, per una infarinatura di base sulle tematiche della failure analysis, è stato organizzato un corso da fruire esclusivamente tramite lezioni registrate. Questo corso si chiama “Failure Analysis in pillole – percorso di avvicinamento alla failure analysis” ed è proposto in 4 moduli di lezioni registrate da 15 minuti aventi per tema gli argomenti principali della failure. La locandina è già disponibile sul sito AIM e al momento ci sono 31 richieste di adesione. Al termine di ogni modulo ci sarà un questionario per valutare l’apprendimento dei singoli partecipanti. Probabilmente, in base alle richieste dei partecipanti, si potrà fissare un incontro telematico con i singoli docenti per discussioni ed approfondimenti. • Il corso “Analisi chimiche” si svolgerà a Milano il 14 e 15 ottobre. Bassani mostra la locandina preparata dal coordinatore del corso Stella, che viene discussa ed approvata dai presenti. Iniziative future • La GdS “Corrosione per non corrosionisti” – coordinatore Farina - sarà organizzata solo da CT CCP. La bozza di scaletta sarà fatta circolare tra un gruppo ristretto di membri per arrivare alla prossima riunione con una proposta condivisa. • Il corso “Prove Meccaniche” si terrà nell’autunno 2021 con una formula rinnovata: due giornate per le prove di base e due giornate per le prove meno comuni e più complesse. Viene selezionato un comitato ristretto per definire il programma e i docenti. • Viene proposta una manifestazione, molto probabilmente una GdS, dal titolo: “Caratterizzazione dei materiali da Additive Manufacturing”, da organizzare con la collaborazione dei CT Metallurgia delle Polveri e tecnologie additive” e CT “Metallurgia fisica”. Il focus degli interventi dovrebbe essere principalmente centrato sulla caratterizzazione delle polveri.
Stato dell’arte e notizie • Il CT approva l’ingresso di un nuovo membro, che in passato ha già collaborato in lezioni del corso di Prove Meccaniche.
La Metallurgia Italiana - maggio 2020
pagina 66
Atti e notizie - AIM news
Comitati tecnici / Study groups CT TRATTAMENTI TERMICI E METALLOGRAFIA (TTM) (riunione telematica del 06 maggio 2020)
Manifestazioni in corso di organizzazione • La GdS “Il Mondo Industrial – aspetti metallurgici e metodologie di controllo” presso CNH Industrial Village a Torino è stata rimandata: il coordinatore Massa conferma il programma ma fa presente che la capienza delle sale e del museo CNH Industrial sarà ridotta a causa delle restrizioni sanitarie, e che bisogna trovare un’altra data accettabile per l’azienda ospitante. Anche un paio di relatori provenienti dall’estero potrebbero avere limitazioni. Probabilmente un rinvio a inizio 2021 ci eviterebbe questi problemi, sperando di essere tornati alla normalità per allora. • Il “27° Convegno Nazionale Trattamenti Termici 2020” è stato rimandato al 18—19 novembre, sempre nella stessa sede di Genova – Magazzini del Cotone – Porto Antico. Ora bisogna attendere l’evoluzione dei contagi e delle restrizioni per confermare definitivamente queste date e riuscire ad organizzare un Convegno sentito dal pubblico. •
•
•
La GdS “Stampaggio: proprietà dell’acciaio, trattamento termico e meccanismo di danneggiamento”, prevista presso la sede di Confindustria Canavese, sarà tenuta in autunno. Bassani suggerisce di tenere la giornata in modalità remota, dal momento che non ci sono visite a impianti. In tal caso la giornata si potrebbe separare in 2-3 differenti sessioni, per evitare ai partecipanti una giornata intera davanti al PC. Petta è favorevole perché in questo modo si riesce a dare continuità all’azione formativa AIM. La terza edizione del corso “Metallurgia di base propedeutico ai trattamenti termici” è previsto nel 2020 per la normale alternanza con i corsi di trattamenti termici e di metallografia. A causa della difficoltà di organizzare questo corso in presenza entro il 2020, si valuta l’opzione del corso a distanza: di discute della possibile durata delle lezioni, e del corso stesso che dovrebbe essere spalmato su più giornate non potendo tenere l’audience al computer per più di 2 ore o 2 ore e mezza. Si deve prevedere uno spazio per domande e chiarimenti, in cui ogni singolo docente abbia tempo di interfacciarsi con gli studenti evitando di spezzettare la lezione. I docenti saranno interpellati per verificare la loro disponibilità a rimodellare le lezioni. Il seminario congiunto con il CT “Metallurgia delle polveri e additive manufacturing” è stato spostato a gennaio 2021 per poter fare la manifestazione di presenza: sono infatti previste visite alle due aziende ospitanti.
Iniziative future • Vista la situazione di incertezza, le manifestazioni del 2021 saranno definite nelle prossime riunioni. Si è già discusso di una GdS “Trattamenti termici e modellazione” – coordinatore Molinari – e di una GdS presso Getrag nella zona di Bari. Stato dell’arte e notizie • Viene presentato ed accettato un nuovo membro del CT, proveniente dall’area industriale.
CT AIM / ASSOFOND – FONDERIA (F) (riunione telematica del 11 maggio 2020)
Manifestazioni in corso di organizzazione • 35° Congresso di Fonderia: il presidente Caironi segnala che è stato deciso di procedere con l’organizzazione per mantenere le date previste del 12 e 13 novembre 2020 a S. Eufemia (BS). Per la raccolta di memorie, che attualmente non sono ancora arrivate, si procederà con una ulteriore richiesta. Tutti sono invitati a contattare altri possibili relatori. Stato dell’arte e notizie • I premi di studio Assofond saranno estesi agli studenti con lauree triennali, valutando la modalità di consegna del premio durante il Congresso. • “Guida per i requisiti di qualità e di controllo dei getti di acciaio, ghisa e alluminio”: i membri del CT hanno ricevuto copia di una analoga guida realizzata nel 2003 da CAEF. Al momento CAEF non ha espresso intenzione di aggiornare od estendere questo documento, ma il CT ritiene che il lavoro possa aiutare nella regolarizzazione dei rapporti con le committenze e lo sviluppo di mercati basati sulla qualità dei getti, in modo da superare la concorrenza dei paesi che producono getti di scarsa qualità e a basso costo. La guida potrebbe essere indirizzata ai progettisti, con indicazioni sulla provenienza dei materiali utilizzati, la determinazione delle discontinuità ritenute accettabili, i mezzi adeguati alla loro determinazione ed un’indicizzazione sull’incremento dei costi per l’esecuzione di tali verifiche. A fine lavori si cercherà di dare ampia visibilità alla guida con l’organizzazione di corsi o giornate di formazione
La Metallurgia Italiana - May 2020
pagina 67
e c
10
c c
10th european conference on continuous casting 2020
10
21-23 October 2020 Bari . Italy
e c
www.aimnet.it/eccc2020
member of MEMBER OF
c c Organised by
We would like to inform you that we agreed with Siderweb to organise ECCC 2020 in the new date of: 21-23 October 2020. The conference venue remains unchanged: The Nicolaus Hotel in Bari. In case it wonâ&#x20AC;&#x2122;t be possible to guarantee the health and safety of our guests, our highest priority, we will decide and promptly communicate a new postponement. We thank you for your understanding and we are looking forward to a successful ECCC Conference! The ECCC is a unique forum for the European continuous casting community to exchange views on the status and the future development of the continuous casting process. The Conference program is abreast of the latest developments in control and automation, advanced continuous casting technologies, application of electromagnetic technologies and mechanical devices to improve the core microstructure, the lubrication issues for improving the surface qualities. Steel metallurgical issues will be addressed as well as their physical and numerical simulation. The exchange of experience in operational practice, maintenance and first results from the recently commissioned plants will integrate the program. The Conference aims at promoting the dialogue among the delegates with industrial and academic background and among the participants in former Conferences and new members of the continuous casting community.
Programme and Registration The advance programme and the Conference registration fees are available on the Conference website: www.aimnet.it/eccc2020/
Exhibition and Sponsoring As an integral element of the event, a technical exhibition will be held during the event. Companies have the opportunity to reinforce their participation and enhance their corporate identification by taking advantage of the benefits offered to them as sponsors of the event. The detailed sponsorship packages are available on the Conference website: www.aimnet.it/eccc2020 Companies interested in taking part in the Exhibition or sponsoring the event may contact: e-mail: commerciale@siderweb.com THE ITALIAN STEEL COMMUNITY tel. +39 030 2540006
siderweb
Contacts ECCC 2020 Organising Secretariat AIM - Associazione Italiana di Metallurgia Via Filippo Turati 8, 20121 Milan - Italy aim@aimnet.it - www.aimnet.it/eccc2020