«
»
№ 31 (160), 2020 . Ё
.,
,
, .
SPLITTING ODD NUMBERS INTO SUMMANDS WITH THE PARTICIPATION OF PRIME NUMBERS Evgeniy Amosov associate professor, Samara state technical university Russia, Samara
6.
,
ё
,
3,
,
ABSTRACT It is shown that any odd number starting from 3 can be represented as the sum of a prime number and a multiple of 6. : , Keywords: prime numbers, decomposition into term. ё 6n±1 [1,2].
3, k–
-
ё
,
ё
,
,
,
, ,
.
.
ё
N=(6k–1) + (6m–1) + (6l–1) =(6(k–1)+6–1) + (6m– 1) + (6l–1), N=(6(k–1)+6m+6l) + 3,
. ,
6
ё 6k,
.
,
-
N=((6k+1) + (6m–1)) + (6l±1).
:
3=6∙0+3, 5=6∙0+5, 7=6∙0+7, 9=6∙1+3, 11=6∙1+5, 13=6∙1+7, 15=6∙2+3, 17=6∙2+5. ,
,
.
.
,
,
6,
.
, 12, 18
[2],
. 6l±1,
,
,
6l±1
.
.
6( 6z),
, 6, -
,
6l±1–6z <25,
ё
.
N N=(6k±1) + (6m±1) + (6l±1), .
ё N>13, , .
k, l, m –
N= (6k +6m+6z) + (6l±1–6z), ,
ё
-
6,
N=(6k+6m+6l) + 3. ,
6, ё
, .
,
,
,
-
ё
7
,
,
3,
,
, –
, 6k+2 1, ё
,
ё
, 6.
ё 6k+4
ё N
6k+6.
.
, ,
-