6 minute read

Formación y transporte de las tormentas de polvo del Sahara

Formación y transporte de las tormentas de polvo del Sahara

Por: Aurora M. Justiniano Santos, PhD

Arriba, se puede observar una banda de polvo del Sahara, que se acerca a las islas de Cabo Verde, en África. Las tormentas de polvo, provenientes de regiones áridas, han sido observadas por siglos, pero en las últimas décadas se ha notado un aumento en la cantidad y en la frecuencia de estas tormentas. En el Atlántico Norte, cientos de millones de toneladas de polvo son transportadas cada año desde el desierto del Sahara, en el norte de África, hacia el océano Atlántico y el Mar Caribe. En los últimos años, la cantidad de polvo transportada ha ido aumentando debido a la sequía que sufre el Norte de África desde finales de los años 60.

El origen de las tormentas de polvo está asociado a las altas temperaturas que calientan el aire. Estas temperaturas altas forman remolinos turbulentos que cargan partículas de polvo que se mueven hacia la atmósfera. A su vez, la frecuencia y la magnitud de las tormentas están determinadas por la velocidad y la fuerza del viento, ya que existe una velocidad mínima de viento para poner en movimiento una partícula de arena de un tamaño dado. En términos generales, partículas de mayor tamaño necesitan más velocidad y fuerza del viento para ponerse en suspensión que partículas de menor tamaño. Si el viento es lo suficientemente fuerte y permanece soplando por mucho

tiempo, las partículas se pondrán en movimiento llegando a alcanzar varios kilómetros (5-10 km) de altura en la atmósfera. Una vez en la atmósfera, el polvo comienza a moverse horizontalmente a través de una capa conocida como la Capa de Aire del Sahara (Saharan Air Layer – SAL-). Cuando esta capa sale de África, los vientos del este (alisios), húmedos y fríos, reducen la capa SAL a alturas de 1.5- 3 km. Los vientos alisios soplan de forma relativamente constante en los océanos Pacífico y Atlántico, desde zonas tropicales hacia el ecuador. Soplan desde el noreste hacia el suroeste en el hemisferio norte y desde el sureste hacia el noroeste en el hemisferio sur. Las tormentas de polvo tardan de 5 a 10 días en cruzar el Atlántico y pueden darse eventos consecutivos que duren hasta 20 días. Las partículas de tamaños más grande se depositan cerca de África, mientras que partículas menores continuarán en movimiento a través de la atmósfera. Estas partículas de polvo se desplazan hacia el oeste, impulsadas por los vientos del este, y cruzan el Atlántico Norte hasta la región del Caribe.

La cantidad de polvo transportado desde el Sahara responde a condiciones atmosféricas del Océano Atlántico Norte. Se ha observado una fuerte relación entre el movimiento, la cantidad de polvo y el fenómeno atmosférico conocido como la Oscilación del Atlántico Norte (NAO, por sus siglas en inglés). Este fenómeno se da como respuesta a diferencias en presión atmosférica (medida del peso que ejerce una columna de aire sobre la tierra o el océano) entre una región de presión alta (peso máximo), en las Islas Azores, y una región de presión baja (peso mínimo), en Islandia. Cuando la diferencia en presión es grande (fase positiva), los vientos se mueven con mayor fuerza, lo que causa sequías en regiones del sur de España y el norte de África. Estas condiciones de sequía y la fuerza de los vientos favorecen el transporte de grandes cantidades de polvo hacia el Atlántico Norte. Como el aire se mueve de alta presión a baja presión, este aumento en la diferencia de presión atmosférica causa una intensificación en los vientos del este. Por el contrario, cuando la diferencia en presión es baja (fase negativa), los vientos se debilitan y aumenta la precipitación en regiones del sur de Europa y norte de África, lo que disminuye el movimiento del polvo. La fase positiva ocurre cuando hay una gran diferencia entre la zona de alta presión de las Islas Azores y la zona de baja presión de Islandia. Como el aire se mueve de alta presión a baja presión, este aumento en la diferencia de presión atmosférica causa una intensificación en los vientos del este.

Por otro lado, también existe una variación en el transporte del polvo del Sahara a través del Atlántico Norte que se debe a diferencias estacionales en la dirección de los vientos del este. Durante el verano del hemisferio norte, los vientos alisios se mueven hacia latitudes más altas (aproximadamente 20ºN) y durante el invierno hacia latitudes más bajas (aproximadamente 5ºN). Este cambio, en el movimiento de los vientos alisios, responde a cambios

Imagen de Meteosat/GOES que muestra la Capa de aire del Sahara (SAL). Los colores rojo y anaranjado representan una concentración alta de partículas de polvo en la atmósfera, mientras que el amarillo representa una concentración menor.

http://goes.gsfc.nasa.gov/pub/goes/101124.itcz.jpg

ZCIT

Esta imagen muestra nubosidad relacionada a la Zona de Convergencia Intertropical. Esta región se ubica al norte del ecuador geográfico y es el lugar donde se unen los vientos alisios del hemisferio norte y los del sur. estacionales en la Zona de Convergencia Intertropical (ZCIT). La ZCIT es el lugar donde se unen los vientos alisios del hemisferio norte y los vientos alisios del hemisferio sur.

El transporte de las tormentas de polvo desde África hacia el Caribe ha adquirido importancia, en los últimos años, debido a las repercusiones de este tipo de polvo en la salud pública y sus efectos en la vida marina. Existen estudios que muestran una relación entre el aumento en la cantidad de polvo del Sahara y un aumento en la incidencia de asma y de alergias en humanos en la región del Caribe.

Se ha observado que las tormentas de polvo transportan organismos, como por ejemplo, hongos, virus y bacterias, que causan enfermedades tanto en humanos, como en plantas y animales. Por ejemplo, las partículas de polvo traen consigo hongos como Aspergillus sydowii, el cual tiene un efecto negativo en las colonias de corales del Caribe. La enfermedad del coral de abanico (Fan coral disease) o aspergillosis está directamente relacionada a la cantidad de polvo mineral del Sahara que es depositada sobre la superficie del océano. Por otro lado, también se observa un efecto de las partículas de polvo en algunos procesos biológicos marinos. Existen estudios que muestran que la falta de nutrientes, como el hierro, limita el crecimiento de los organismos fotosintéticos, conocidos como fitoplancton, en algunas partes del océano. Las tormentas de polvo pueden ser una fuente de hierro para estos organismos en aguas superficiales, al aumentar su crecimiento y ayudar en los procesos de fotosíntesis (Hipótesis del Hierro, Martin, 1993).

A pesar de la importancia del transporte y la deposición del polvo hacia regiones lejanas de África, no existen muchos estudios al respecto por las dificultades en la adquisición de datos confiables. Aún así, algunos estudios reportan que, de un transporte de aproximadamente 290 Tg/año (teragramos por año) hacia el Atlántico Norte, se depositan aproximadamente 170 Tg/año de polvo atmosférico. También, se indica que, de 82 Tg/año transportados hacia el Mar Caribe, se depositan aproximadamente 5 Tg/año en esta región del continente americano. Esto es equivalente a transportar 1 billón de tazas de azúcar al año a través del Atlántico Norte y depositar 322 millones de tazas de azúcar en el Océano Atlántico y 20 millones de esas tazas de azúcar en el Mar Caribe. Hoy día, los científicos trabajan en modelos climáticos para tratar de cuantificar el impacto del aumento en la cantidad y en la frecuencia de las tormentas de polvo del Sahara. A través de estos modelos, se intenta comprender los cambios en la concentración atmosférica de las partículas de polvo, entender qué ha sucedido en períodos anteriores y predecir los efectos de las tormentas hacia nuestra región.

Foto de un coral enfermo a causa del hongo terrestre Aspergillus sydowi.

This article is from: