KunststoffXrea 4_2021

Page 21

KUNSTSTOFF XTRA

Composites

Schutz vor elektromagnetischen Störfeldern

Ultraleichtes Abschirmmaterial Empa-Forschern ist es gelungen, Aerogele für die Mikroelektronik nutzbar zu machen: Aerogele auf Basis von Zellulose-Nanofasern können elektromagnetische Strahlung in weiten Frequenzbereichen wirksam abschirmen – und sind bezüglich Gewicht konkurrenzlos.

Elektromotoren und elektronische Geräte erzeugen elektromagnetische Felder, die bisweilen abgeschirmt werden müssen, um benachbarte Elektronikbauteile oder die Übertragung von Signalen nicht zu beeinflussen. Hochfrequente elektromagnetische Felder können nur mit allseitig geschlossenen, leitfähigen Hüllen abgeschirmt werden. Oft werden dafür dünne Bleche oder metallbedampfte Folien verwendet. Doch für viele Anwendungen ist eine solche Abschirmung zu schwierig oder zu schlecht auf die gegebene Geometrie adaptierbar. Ideal wäre ein leichtes, flexibles und langlebiges Material mit extrem hoher Abschirmwirkung.

Aerogele gegen elektromagnetische Strahlung Ein Durchbruch in diesem Bereich gelang nun einem Forscherteam um Zhihui Zeng und Gustav Nyström an der Empa. Die Forscher nutzen Nanofasern aus Zellulose als Basis für ein Aerogel, ein leichtes, hochporöses Material. Entscheidend bei der Verarbeitung und Modifikation dieser Zellulose-Nanofasern ist, dass man bestimmte Mikrostrukturen definiert herstellen kann und die dadurch erzielten Effekte zu interpretieren weiss. Diese Zusammenhänge zwischen Struktur und Eigenschaften sind genau das Forschungsgebiet von Nyströms Team an der Empa. Den Forschern gelang es, eine Mixtur aus Zellulose-Nanofasern und Silber-Nanodrähten herzustellen und damit ultraleichte Feinstrukturen zu erzeugen, die elektromagnetische Strahlung hervorragend abschirmen. Beeindruckend ist dabei die schiere Wir¹ Rainer Klose, Kommunikation, Empa

4/2021

Bild: Empa

Rainer Klose ¹

Eine Probe des an der Empa hergestellten elektromagnetischen Abschirmmaterials – ein Kompositwerkstoff aus Zellulose-Nanofasern und Silber-Nanodrähten.

kung des Materials: Bei einer Dichte von nur 1,7 Milligramm pro Kubikzentimeter erzielt das silberverstärkte Zellulose-Aerogel im Frequenzbereich von hochauflösender Radarstrahlung (8 bis 12 GHz) mehr als 40 dB Abschirmung – mit anderen Worten: Nahezu die gesamte Strahlung in diesem Frequenzbereich wird vom Material abgefangen.

gelangen, giessen die Forscher das Material in vorgekühlte Formen und lassen es langsam ausfrieren. Das Wachstum der Eiskristalle erzeugt die für die Dämpfung der Felder optimale Porenstruktur. Mit dieser Herstellungsmethode lässt sich die Dämpfungswirkung sogar in verschiedene Raumrichtungen spezifizieren: Wenn das Material von unten nach oben in der Gussform ausfriert, fällt die elektromagnetische Dämpfung in vertikaler Richtung geringer aus. In horizontaler Richtung – also rechtwinklig zur Gefrier-Richtung – wird die Dämpfung optimiert. Die so gegossenen Abschirm-Strukturen sind höchst flexibel: Selbst nach tausendfachem hinund herbiegen ist die dämpfende Wirkung praktisch gleich gross wie beim Neumaterial. Die gewünschte Absorption kann sogar noch leicht angepasst werden durch eine Zugabe von mehr oder weniger Silber-Nanodrähten in die Mixtur, durch die Porosität des gegossenen Aerogels und die Dicke der gegossenen Schicht. Literatur Z Zeng, T Wu, D Han, Q Ren, G Siqueira, G Nyström; Ultralight, Flexible, and Biomimetic Nanocellulose/Silver Nanowire Aerogels for Electromagnetic Interference Shielding; ACS Nano (2020); doi: 10.1021/acsnano.9b07452 Z Zeng, C Wang, G Siqueira, D Han, A Huch, S

Eiskristalle steuern die Form Entscheidend für die abschirmende Wirkung ist nicht nur die korrekte Mischung aus Zellulose und Silberdrähtchen, sondern auch die Porenstruktur des Materials. Innerhalb der Poren werden die elektromagnetischen Felder hin und her reflektiert und lösen zusätzlich im Composite-Material elektromagnetische Felder aus, die dem eingestrahlten Feld entgegenwirken. Um zu Poren mit optimaler Grösse und Form zu

Abdolhosseinzadeh, J Heier, F Nüesch, CJ Zhang, G Nyström; Nanocellulose-MXene Biomimetic Aerogels with Orientation-Tunable Electromagnetic Interference Shielding Performance; Advanced Science (2020); doi: 10.1002/advs.202000979

Empa Dr. Gustav Nyström Überlandstr. 129, CH-8600 Dübendorf +41 58 765 45 83 gustav.nystroem@empa.ch www.empa.ch n 19


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.