KunststoffXtra 3/2021

Page 20

KUNSTSTOFF XTRA

Werkstoffe

Elastomergebundene Magnete

Perfekt verbunden ohne Spannungen

Ob in Motorgetrieben und Nockenwellen in der Automobil- und Zulieferbranche, als Drehgeber in der Haustechnik und im Maschinenbau, in Polrädern und Kugellagern oder Pneumatik- und Hydraulikzylindern: Magnete übernehmen in zahlreichen industriellen Anwendungen wichtige Aufgaben. Sie helfen unter anderem dabei, Positionen, Geschwindigkeiten, Drehzahlen, Winkel und Lagen zu erkennen und zu erfassen. Oft kommen dafür kunststoffgebundene Magnete zum Einsatz, bei denen Magnetpulver in ein thermoplastisches Grundmaterial wie Polyamid (PA) oder Polyphenylensulfid (PPS) eingebracht wird. Dieses Compound wird anschliessend direkt auf den in der Regel metallischen Träger aufgespritzt. Dabei kann es jedoch in einigen Fällen zu Problemen kommen – denn der bei hohen Temperaturen aufgebrachte Kunststoff zieht sich beim Erkalten zusammen, und das führt zu einem Materialschwund. Dies ist wiederum die Ursache für innere Spannungen im Magneten und bedeutet, dass dieser nicht optimal am Träger haften bleibt. Auch unterschiedliche Ausdehnungskoeffizienten von Magnet- und Trägermaterial können die Verbindung und damit die Funktion der Baugruppe beeinträchtigen, insbesondere in Anwendungen mit grossen Temperaturschwankungen.

Hohe Elastizität und chemische Verbindung Ein zusätzliches Verkleben des Magneten ist zwar eine naheliegende Lösung, bedeutet allerdings auch einen Mehraufwand und führt nicht immer zu einem optimalen Ergebnis. 18

Bilder: MS Schramberg

Kunststoffgebundene Magnete, die im Spritzgussverfahren hergestellt und auf einen Träger aufgebracht werden, stossen bei verschiedenen Anwendungen an ihre Grenzen: Der Materialschwund beim Erstarren der Masse sowie unterschiedliche Ausdehnungskoeffizienten können innere Spannungen und sogar Risse verursachen. MS-Schramberg erweitert deshalb das Portfolio um elastomergebundene Magnete, die in solchen Fällen durch ihre hohe Elastizität deutliche Vorteile bieten.

Elastomergebundene Magnete bieten durch ihre hohe Elastizität deutliche Vorteile bei einer Vielzahl von Anwendungen.

Eine deutlich bessere Alternative sind in diesen Fällen elastomergebundene Magnete. Auch hier sorgt ein Magnetpulver für die gewünschte magnetische Wirkung. Dieses wird jedoch nicht in einen thermoplastischen Kunststoff, sondern in ein synthetisches Elastomer wie etwa hydrierten oder nicht hydrierten Acrylnitril-ButadienKautschuk (HNBR, NBR) eingebracht. Diese Materialien sind gegenüber thermoplastischem Kunststoff deutlich elastischer. Ausserdem geht das Elastomer beim Aufbringen auf das Trägermaterial mit diesem eine chemische Verbindung ein. Das ermöglicht einen besonders zuverlässigen und festen Halt ohne innere Spannungen im Magneten. Auch weisen Elastomere eine hohe Schlagzähigkeit auf und sind äusserst beständig gegenüber einer Vielzahl von Medien, etwa Schmierstoffen und Chemikalien. Die Temperaturbeständigkeit liegt je nach Material bei bis zu 180 Grad Celsius. Risse durch Aufweitung bei der Montage sind dank der hohen Elastizität so gut wie ausgeschlossen.

Verschiedene Magnetisierungsarten möglich Ein weiterer Vorteil elastomergebundener Magnete ist die hohe Homogenität des Grundmaterials. Dies erlaubt eine besonders genaue Magnetisierung – ideal für Anwendungen, in denen es auf Präzision ankommt. Anisotrope Magnete sind mit

Bei der Herstellung elastomergebundener Magnete wird ein Magnetpulver in ein synthetisches Elastomer wie etwa hydrierten oder nicht hydrierten Acrylnitril-ButadienKautschuk (HNBR, NBR) eingebracht.

3/2021


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.