AMT DEC 2021

Page 58

056

AUTOMOTIVE & MOTORSPORT

Where can F1 in Schools take students? A remarkable (young) Australian story Thomas Agars lived and breathed the F1 in Schools Technology Challenge throughout his secondary education from 2008 to 2012. In 2012 he was a member of the World Championship winning team “Cold Fusion”, with whom he manufactured and raced the record-setting car. At a very young age, Thomas knew he was born to be an engineer. Using the spare material found in his father’s shed, Thomas would construct anything and everything, using his ability to observe existing designs and recreate them. From remote controlled cars/ aircraft to bridges and everything else in between. There was always an ongoing project for him to work on.

Thomas Agars is now seeking fresh opportunities in the aerospace industry in Australia.

It therefore seems inevitable that Thomas would be drawn to the F1 in Schools STEM Challenge. Established by the Re-Engineering Australia Foundation (REA Foundation) in 2003, F1 in Schools is the world’s foremost student competition for Science, Technology, Engineering and Mathematics. Each year more than 17,000 schools in 51 nations take on the challenge of developing the world’s fastest miniature F1 car. “After meeting the head technology teacher, Stephen Read, during a Brighton Secondary School open day, I was immediately drawn towards the F1 in Schools challenge,” Thomas recalls. “I would stay at school, alone at first, for as long as I could, teaching myself how to use CATIA V5, designing ‘my first car’. I quickly picked this up and before long I was leading the design of cars competing in the national competition. “At first, it was a struggle, as the level of competition within Australia alone is phenomenal. After several years of near wins, I took away unique learning experiences each competition. Above all else this experience taught me the importance of teamwork and collaboration.” Among his peers in the 2012 champion team “Cold Fusion”, Thomas became known for pushing the limits within the competition, innovating, and approaching every problem with enthusiasm. As a testimonial to Thomas’ out of the box thinking, during his final year of competition he explored new ways to squeeze every ounce of performance out of the car. One innovation was to exploit a loophole within the regulations to include an articulated nozzle towards the rear of the car to maximise forwards acceleration. At the time, this had never been seen in the competition, and improved the lap times significantly. In the following years, other teams from all around the globe successfully implemented them, synonymous to the KERS (Kinetic Energy Recovery System) technology used in real F1 cars. For several years, teams developing KERS repeatedly broke speed records, a team from Brighton Secondary School being the current world record holders. “I believe I can speak on behalf of all F1 in School alumni that this learning experience isn’t easy to convey via traditional textbook teaching,” Thomas adds. “However the F1 in Schools challenge nails it on the head.”

F1 in Schools – A significant value proposition Through his success in the F1 in Schools challenge in 2012, Thomas was awarded a full scholarship to complete a Masters of Aeronautical Engineering at the City University. He was one of the first Australian recipients to take up this scholarship, traveling halfway around the globe as a 19-year-old to set up a new life in the UK. As a freshman student at City University, he was picked out by the leaders of the Formula Student team ‘City Racing’ to assist with the manufacture of their car. On top of Thomas’ talent, he also proved

AMT DEC 2021

to be resilient in character. To sustain the significant living costs of London, he worked night shifts at the local pub. Later in his degree he was able to support himself by working as a research assistant within the university’s transonic wind tunnels. “By far the most valuable learning experience during my studies was actually just the act of living independently abroad with all of the challenges that presented me,” Thomas remarks. “It provided the catalyst to which I developed my character and multi-cultural perspective on the world. Because of my time abroad, I have made friends from all over the world. “It was about this time, 2015-2016, that I started really taking notice of the developments made by SpaceX, successfully vertically landing their Falcon 9 rocket. I was absolutely awestruck, I knew that this is where I wanted to end up, working in the aerospace industry. Thankfully, my trajectory within my education was nominal and on course to this goal. “However, I also wanted to expand my problem-solving ability by learning essential programming skills within Python, Arduino and MATLAB. I did this through a series of self-lead projects, and implemented custom AOA sensors within my work at City University. In addition to my formal education in aeronautical disciplines, I found myself absorbed in orbital mechanics and space vehicle design.” Thomas graduated in 2018 with first-class honours, topping his class. In his final year, his exceptional design and CAD skills became very apparent when he successfully led the design of a fixed-wing unmanned aerial vehicle (UAV) to compete in the British Model Flying Association (BMFA) competition. The UAV is now on display within the aeronautical labs at City University to set a topquality example for future students.


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

MANUFACTURING HISTORY: A look back in time

4min
pages 120-122

AMTIL FORUMS

17min
pages 108-111

Lockheed Martin partners with Omni Tanker

4min
page 106

Integra Systems – What is Circularity by Design?

3min
page 102

Foamex: Recycling polystyrene & closing the loop

2min
page 103

A smarter way of dealing with plastic

4min
pages 104-105

Recycling pioneer named NSW Australian of the Year

4min
page 101

Autowell – Vices for any machining setting

2min
page 99

Improving plastic recycling with hyperspectral imaging

4min
page 100

Haubex: Lang Technik’s latest innovation

3min
page 98

Sharp Tooling commissions large Okuma machine

2min
page 97

TAFE NSW gets tooled up with Suhner

3min
page 96

AM case study: AGCOM

5min
pages 92-93

COMPANY FOCUS: Agerris – Pioneers in their field

7min
pages 94-95

Meeting the need for extremely dry compressed air

7min
pages 90-91

Strong growth for food, grocery manufacturing

3min
page 89

ONE ON ONE: Dr Mirjana Prica

15min
pages 84-87

The impact of alignment on steel turning processes

5min
pages 82-83

Upton Engineering – Performance through precision

17min
pages 76-81

Metals leader partners with ipLaser

15min
pages 72-75

Tool for safer human-robot collaboration

4min
page 68

Perfume robots

4min
page 69

Press brakes – Why you need a seven-axis machine

6min
pages 70-71

Lorch – Bringing cobot welding to ANZ

5min
pages 66-67

Forklift safety: Is hi-vis the best we can offer?

6min
pages 64-65

Hangsterfer’s: A racing finish

6min
pages 62-63

Where can F1 in Schools take students?

14min
pages 58-61

EVOS: EV charging, made in Brisbane

4min
pages 56-57

What can we learn from the great chip famine?

5min
pages 52-53

Simulation speeds rollcage design process

7min
pages 50-51

How 3D printing makes McLaren go faster

8min
pages 54-55

Aussie aftermarket sector steams ahead

11min
pages 44-49

From the CEO

4min
pages 12-13

VOICEBOX: Opinions from the manufacturing industry

27min
pages 30-35

PRODUCT NEWS: Selection of new products

22min
pages 36-43

INDUSTRY NEWS: Current news from the Industry

27min
pages 20-29

From the Ministry

4min
pages 14-15

Advances in CNC tech fuel need for digitised tools 7

2min
pages 8-9

From the Industry

4min
pages 16-17

From the Union

4min
pages 18-19
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.