Organised service teams that can take action in the locations where the equipment is operated. Provision of access to original spare parts.
Case study: Lignite mine, Bulgaria An example demonstrating full competence on the side of standard, as well as highly customised
gear technology, is the delivery of gears for the KWK-2000 and KWK-400L lignite bucket-wheel excavators put into operation in 2019 at the Mini Marica Iztok EAD lignite mine (Figure 1). The technical design and production of both excavators was carried out under the internal cooperation of FAMUR, FAMUR FAMAK and SKW Projekt, forming part of TDJ. Structural designs of new bucket-wheel drive gears and designs of worm-epicyclic gears used in the driving and rotating system were developed at FAMUR Institute – a company belonging to the FAMUR Group, specialising in the development and implementation of new equipment and technologies.
Designing the bucket-wheel drive gear Conceptual work began with the adoption of design assumptions in December 2016. The basic construction assumptions for the bucket-wheel drive gear of the KWK-2000 excavator were developed by SKW Projekt (Table 1). An additional requirement that influenced the final design of the gear was the need to support the bucket-wheel shaft on the bearings of the gearbox’s planetary carrier. This meant that the gear design, Figure 1. Construction site of the KWK-2000 excavator. particularly the gear body and planetary carrier, had Table 1. Basic construction assumptions for the FBWG 1000 bucket-wheel drive gear to transfer loads from the of the KWK-2000 excavator weight, as well as the mining forces of the bucket wheel, Parameters Value to the excavator arm. Rated output (kW) 1000 The entire process of creating the structural Input shaft speed (rpm) 1000 design of the FBWG 1000 Overall gear ratio transmission 238 (approximately) gear included: The development of a Total weight (t) <38 conceptual design. Bearing rating life (h) >50 000 Strength calculations. Permissible longtitudinal inclination of the Bearing durability -17 – 12 gear (˚) calculations. The development of a Forced lubrication system with dupicated pump system preliminary structural Lubrication method and drive independent of the design. kinematic gear train FEM strength analyses. Modal analyses. Oil filtration Duplex pressure filter CFD numerical thermal Maximum oil temperature (˚C) 80 analyses. Ambient temperature (˚C) -25 – 45 The advanced The measurment of bearing modules of the software temperatures, oil temperature, packages used enabled pressures in the forced oil Diagnostic system enabling circulation system, oil flow rate, the optimisation of the oil flow indication and vibration stress distribution on acquisition, and monitoring the teeth (Figure 2). This Oil heating system for low ambient Electric heaters built into the was accomplished with temperature conditions gear oil compartment tooth line modification. Permissible sound power level LWA according <104 The magnitude of the to EN ISO 9614-2 [db(A)] modification is assumed
20
WORLD COAL ISSUE 2 2021