AMT AUG/SEPT 2020

Page 56

054

MEDICAL

Made to measure: 3D-printed medical implants for joint and musculoskeletal patients Media outlets frequently run stories detailing how uniquely designed 3D-printed parts implanted into patients are offering a welcome, ‘never-before-available’ solution to medical problems. These stories have featured items such as a 3D-printed prosthetic jaw designed by the patient’s own doctor; spinal parts to support fractured or damaged vertebrae; a patient-specific sternum, and so on. These are just some of the phenomenal achievements 3D printing technology can bring to suffering patients. Becoming increasingly aware of solutions they can offer their patients, doctors are embracing the technology, applying their own knowledge of anatomy, using the latest imaging technology, and working with CAD designers to construct unique parts for their patient. What we are really talking about is a world of ‘customised body parts’ – customised because all human beings are unique and no one size fits all! More common implants occur for hips and knees, but here, most replacement parts used in operations come in a standard size and form. Injuries to knee and hip joints generally arise as a result of musculoskeletal trauma from accidents, sports injuries, improper training practices or when a person is not sufficiently warmed up or stretched in readiness to undertake their exercise regime or compete in an event. These can be acute injuries that require immediate treatment. Chronic injuries arise from overuse of one part of a particular joint or simply due to the aging process. Hip replacement is common practice with the Federal Government, through the Therapeutic Goods Administration (TGA), monitoring implants since 1999 – specifically of metal-on-metal (MoM) parts such as hip replacements. Interestingly, problems appear to arise in complete hip replacements, where the size of one part does not suit the patient, the ‘standard’ part either being too large or too small. Surgical procedures associated with hip implants have been revised, resulting in better outcomes, but the situation negates the emerging opportunities of making patient-specific implants using 3D printing technology. Another advantage of 3D printing that will overcome secondary issues cited by the TGA, is by printing in titanium, specifically Tu6Al4V, a safe, lightweight material. This is replacing products made using chromium and cobalt, which are known to produce undesired side effects due to metal ions entering the body’s blood stream. Advances in titanium hip replacement parts are numerous. Recently, SLM Solutions, a manufacturer of 3D metal printers headquartered in Lübeck, Germany, entered a strategic partnership with Canwell Medical, a leading medical device manufacturer based in China that supplies 30 countries across Asia, the Americas and Europe. SLM

Orthopaedic hip implants

AMT AUG/SEP 2020

An orthopaedic knee implant.

Solutions has supported the installation of metal 3D printing laser systems by providing technical training along with assistance on research and development. Jerry Ma, General Manager of SLM Solutions Asia Pacific, indicated: “Laser melting technology and medical is an important application field. Our global experience accumulation and innovation will help us develop China’s medical field.” SLM’s unique technology applies complex geometries that guide multiple lasers selectively melting deposition powder layer by layer, resulting in densities as high as 99.9%, highly suitable and safe for orthopaedic hip implants. A recent example produced on an SLM 280 twin laser system are acetabular cups. These items are usually built in a ‘standard’ size but offer distinct advantages. The technology allows the structuring of a porous or lattice structured exterior surface that directly facilitates ‘osseointegration’, the connection between living bone and the surface of a load-bearing artificial implant – a distinct achievement for long-term patient outcomes. According to a study by public health researchers at Monash University, hip replacements are predicted to rise from 25,945 in 2013 to 79,790 by 2030. This has become a ready-made market for an innovative Australian manufacturer. In addition, hip replacement parts are small and easy to ship, providing a real possibility of tapping into an overseas market such as the USA, where more than 300,000 hip replacement surgeries occur annually. Knee replacement, or knee arthroplasty, is a surgical procedure replacing those parts in the knee joint that bear weight and cause pain in patients. Knees are a complex ‘hinge’ joint that bends and straightens with movement. However, the complexity lies in the way the bone surfaces glide and roll each time a knee bends. Knee issues commonly arise from rheumatoid or osteoarthritis, and can be exacerbated by obesity; irrespective of the issue, a great deal of pain is often experienced. While a range of medical options are available to ‘fix’ the problem, knee replacement is quite a common surgical solution. Surgery using standard knee replacement implants can result in a ‘nearly right’ fit. Surgeons are provided with a box of assorted sizes, male or femalespecific, from which they can select. Guided by both image scans and a view of the damage, a suitable selection is often possible. However, an off-the-shelf knee implant may have an overhang or underhang if slightly too large or small, leaving patient outcomes less comfortable than desirable.


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

MANUFACTURING HISTORY – A look back in time

5min
pages 120-121

SCHUNK improves efficiency for gear manufacturer

5min
pages 106-107

AMTIL FORUMS

18min
pages 108-111

Kalgoorlie business thrives under pressure

4min
page 100

ADE & Austin deliver revolutionary truck tech to NT mine

7min
pages 101-103

Manufacturing under COVID-19: Overcoming challenges

7min
pages 98-99

Dimac Tooling – Comprehensive workholding

6min
pages 104-105

Lucidworks – Building digital ecosystems

2min
page 97

Carving out a path for India’s economic boom

6min
pages 92-93

ANCA: Time-saving enhancements for offline productivity

4min
page 96

Digitally transforming businesses in the manufacturing sector

6min
pages 94-95

Tornos: Growing up ‘Swiss

5min
pages 90-91

Constructing South-East Asia’s largest 3D printer

4min
pages 88-89

NEPEAN - Strength, service and uncompromising quality

5min
pages 86-87

Robovoid: Using AM to support construction innovation

5min
pages 84-85

QUALITY & INSPECTION

13min
pages 80-82

ONE ON ONE

13min
pages 76-79

MAPAL: Process-reliable face milling with a long tool life

4min
pages 74-75

Guhring additive tool cuts costs for aerospace subcontractor

3min
page 73

Can fabricated metals industry easily transition to onshoring?

4min
pages 68-69

Iscar – Cast-iron LogIQ

8min
pages 70-72

Jmar expands capabilities with new Yawei investment

5min
pages 66-67

COMPANY FOCUS

14min
pages 62-65

Robots in labs: Making healthcare more productive

6min
pages 60-61

Better prototyping: Nidek cuts time-to-market with 3D printing

7min
pages 54-55

3D-printed medical implants

7min
pages 56-57

Howard Wright: Simple, smart, human

5min
pages 58-59

From bomb-detection to virus-detection – World-first

6min
pages 52-53

RAM3D – Bringing additive manufacturing to medical

5min
pages 50-51

Export/import controls on medical equipment for COVID-19

4min
pages 48-49

PRODUCT NEWS

22min
pages 36-43

From the Ministry

3min
pages 14-15

Surging ahead in times of COVID-19

11min
pages 44-47

VOICEBOX

21min
pages 30-35

From the Union

5min
pages 18-19

From the CEO

5min
pages 12-13
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.