2019 Swanson School Summary of Faculty Research

Page 114

MECHANICAL ENGINEERING & MATERIALS SCIENCE

Daniel G. Cole, PhD, PE

605 Benedum Hall | 3700 O’Hara Street | Pittsburgh, PA 15261

Associate Professor Director, Stephen R. Tritch Program in Nuclear Engineering

P: 412-624-3069 dgcole@pitt.edu

Bayesian Techniques for Control

The Cole Group’s focus is instrumentation and controls and the application of dynamic systems, measurement and control theory to modern industrial and energy systems. Current research efforts are investigating Bayesian techniques for system estimation and control, the application of advanced computing tools for control, supervisory control of nuclear and energy systems, and cyber security for industrial control systems.

Feedback control is very good at handling uncertainty in systems. As systems become more complex, there is a need to develop advanced approaches for handling uncertainty. Probability theory provides flexible and comprehensive techniques for describing uncertainty, and Bayes’ rule provides an important tool for statistical inference and updating probabilities and estimates with new measurements. This research looks at applying probabilistic tools, like Bayes’ rule, Bayesian networks, and Monte Carlo techniques, to control problems. These tools provide techniques for describing control systems that can be used at different time scales and levels of hierarchy.

Advanced Computing for Control Supercomputers have been pushed to incredible speeds and are ever more capable at handling huge computational problems. Oddly, the tools and techniques of highperformance computing (HPC) have found little use in control systems, which often depend upon single processors or highly decentralized controllers. This research is investigating the application of advanced computing tools, like parallel computing, to controls. These advanced tools can be used for controller design, using for example HPC, or for controller implementation, using parallel banks of controllers.

Supervisory Control of Nuclear Systems A significant challenge for making viable SMRs (small modular reactors) is the need to reduce demands for labor-intensive surveillance, testing, and inspection. In this research, we are using advanced control techniques to enable automated online, in-situ monitoring of SMR instrumentation and control components. This will allow engineers to rapidly measure system dynamics and loop processes, and tune these loops to optimize conditions for

peak performance. A significant advantage is that these tools can be used during reactor operation to monitor components. This effort includes modeling and control of light-water, moltensalt, and advanced high-temperature reactors, the development of supervisory control to manage multi-unit SMR plants, and advanced decision-making techniques to meet economic and safety objectives.

Cyber Security for Industrial Control Systems As the industrial internet grows, more industrial systems will be digital, enabling robust and resilient operation of industrial processes, and improved system monitoring, fault tolerance, and data acquisition. To achieve this, I&C systems will include networks that connect systems, and supervisory control will require the transfer of information throughout the

114

control system hierarchy from basic process and safety systems to site command and control to corporate decision making. These interdependencies presents the possibility of cyber incidents compromising plant safety, security, and emergency preparedness. This research is developing cybersecurity approaches for industrial systems that diagnose and inform decision

makers about potential attacks and that provide procedures and protocols to react to such attacks. Specifically, this research will address the challenges unique to the nuclear power enterprise. The research will develop methods and approaches that can rigorously evaluate the vulnerabilities of cyber-physical systems, and will propose tools that can mitigate these vulnerabilities.

DEPARTMENT OF MECHANICAL ENGINEERING AND MATERIALS SCIENCE


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Wei Xiong, PhD, D.Eng

37min
pages 127-146

Jörg M.K. Wiezorek, PhD

2min
page 126

Guofeng Wang, PhD

2min
page 125

Jeffrey Vipperman, PhD

2min
page 124

Albert C. To, PhD

1min
page 123

Inanc Senocak, PhD

1min
page 121

Patrick Smolinski, PhD

1min
page 122

Jung-Kun Lee, PhD

3min
page 117

Ian Nettleship, PhD

2min
page 119

David Schmidt, PhD

2min
page 120

Scott X. Mao, PhD

2min
page 118

Tevis D. B. Jacobs, PhD

1min
page 116

Katherine Hornbostel, PhD

1min
page 115

Daniel G. Cole, PhD, PE

2min
page 114

William W. Clark, PhD

2min
page 113

Heng Ban, PhD, PE

2min
page 110

Minking K. Chyu, PhD

2min
page 112

Markus Chmielus, PhD

1min
page 111

M. Ravi Shankar, PhD

2min
pages 106-108

Jayant Rajgopal, PhD

2min
page 105

Paul W. Leu, PhD

1min
page 102

Lisa M. Maillart, PhD

2min
page 103

Amin Rahimian, PhD

1min
page 104

Youngjae Chun, PhD

3min
page 98

Renee M. Clark, PhD

2min
page 99

Joel M. Haight, PhD, P.E., CIH, CSP

2min
page 100

Daniel R. Jiang, PhD

1min
page 101

Karen M. Bursic, PhD

1min
page 97

Mary Besterfield-Sacre, PhD

2min
page 96

Mostafa Bedewy, PhD

1min
page 95

Minhee Yun, PhD

2min
pages 92-94

Gregory F. Reed, PhD

3min
page 88

Feng Xiong, PhD

2min
page 90

Jun Yang, PhD

3min
page 91

Guangyong Li, PhD

2min
page 86

Inhee Lee, PhD

2min
page 85

Hong Koo Kim, PhD

2min
page 83

Alexis Kwasinski, PhD

2min
page 84

Alex K. Jones, PhD

3min
page 82

Alan D. George, PhD, FIEEE

2min
page 79

Masoud Barati, PhD

2min
page 78

Brandon M. Grainger, PhD

2min
page 80

Mai Abdelhakim, PhD

1min
page 77

Radisav Vidic, PhD

2min
pages 75-76

Piervincenzo Rizzo, PhD

2min
page 73

Aleksandar Stevanovic, PhD, P.E., FASCE

2min
page 74

Carla Ng, PhD

2min
page 72

Lei Fang, PhD

3min
page 65

Alessandro Fascetti, PhD

2min
page 66

Sarah Haig, PhD

2min
page 68

Xu Liang, PhD

2min
page 70

Jeen-Shang Lin, PhD, P.E

2min
page 71

Andrew P. Bunger, PhD

2min
page 64

Melissa Bilec, PhD

2min
page 63

Judith C. Yang, PhD

2min
pages 60-62

Götz Veser, PhD

2min
page 58

Jason E. Shoemaker, PhD

1min
page 56

Tagbo Niepa, PhD

2min
page 54

Christopher E. Wilmer, PhD

1min
page 59

Sachin S. Velankar, PhD

2min
page 57

Giannis Mpourmpakis, PhD

2min
page 53

Badie Morsi, PhD

3min
page 52

James R. McKone, PhD

1min
page 51

Steve R. Little, PhD

2min
page 50

J. Karl Johnson, PhD

2min
page 47

John A. Keith, PhD

2min
page 48

Susan Fullerton, PhD

2min
page 46

Lei Li, PhD

1min
page 49

Robert M. Enick, PhD

2min
page 45

Eric J. Beckman, PhD

2min
page 44

David A. Vorp, PhD

2min
page 37

Jonathan Vande Geest, PhD

1min
page 36

Justin S. Weinbaum, PhD

1min
page 38

Ipsita Banerjee, PhD

2min
page 43

George Stetten, MD, PhD

2min
page 34

Savio L-Y. Woo, PhD, D.Sc., D.Eng

2min
page 39

Gelsy Torres-Oviedo, PhD

3min
page 35

Ioannis Zervantonakis, PhD

2min
pages 40-42

Mark Redfern, PhD

2min
page 29

Spandan Maiti, PhD

2min
page 28

Partha Roy, PhD

2min
page 30

Sanjeev G. Shroff, PhD

2min
page 33

Warren C. Ruder, PhD

1min
page 31

Joseph Thomas Samosky, PhD

2min
page 32

Patrick J. Loughlin, PhD

2min
page 27

Prashant N. Kumta, PhD

2min
page 26

Mangesh Kulkarni, PhD

1min
page 25

Takashi “TK” Kozai, PhD

2min
page 24

Alan D. Hirschman, PhD

1min
page 21

Tamer S. Ibrahim, PhD

5min
page 22

Mark Gartner, PhD

1min
page 20

Bistra Iordanova, PhD

1min
page 23

Richard E. Debski, PhD

1min
page 17

Neeraj J. Gandhi, PhD

2min
page 19

William Federspiel, PhD

2min
page 18

Lance A. Davidson, PhD

2min
page 16

Aaron Batista, PhD

4min
page 9

Rakié Cham, PhD

2min
page 13

Bryan N. Brown, PhD

1min
page 12

Tracy Cui, PhD

2min
page 14

Kurt E. Beschorner, PhD

2min
page 10

Moni Kanchan Datta, PhD

2min
page 15

Harvey Borovetz, PhD

1min
page 11

Steven Abramowitch, PhD

2min
page 8
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.