2019 Swanson School Summary of Faculty Research

Page 120

MECHANICAL ENGINEERING & MATERIALS SCIENCE

David Schmidt, PhD

509 Benedum Hall | 3700 O’Hara Street | Pittsburgh, PA 15261

Associate Professor

P: 412-625-9755  C: 412-445-2185 des53@pitt.edu

David Schmidt received his PhD in 2009 from Carnegie Mellon University in the area of computational mechanics. His dissertation research developed predictive simulation approaches tailored to the soft tissue biomechanics of cardiovascular systems. Prior to his doctoral studies, Dr. Schmidt developed a career in industry focused on the integration of engineering design, manufacturing and computational modeling. His industry experience includes aerospace, defense, automotive, biomedical and manufacturing. The experience based developed in these industrial environments serves as a core component in his approach to research. A central aim of among his research projects is to bridge the gap between traditional engineering techniques and the evolving state simulationbased technologies. His recent research activity has been in the area of middle ear gas exchange mechanisms, multi-scale tissue biomechanics, robotic assisted surgery, biodegradable magnesium alloys and powder metal materials processing.

Middle Ear Gas Exchange and Pressure Regulation Gas exchange within the middle ear mucosa is a dominant mechanism associated with middle ear pressure regulation. Diseased states associated with middle ear inflammation can be attributed to complex structure-function relationships linking mucosa-scale gas exchange and aggregate pressure regulation. Dr. Schmidt’s research has developed a computational model to explore the inter-related roles of constituent tissue mechanisms driving gas conductance. The adopted meso-scale approach has been used to quantity gas exchange as a function of mucosa thickness, capillary morphology, gas media and blood flow characteristics. Physiologically consistent models of capillary microstructure have been derived from multi-photon fluorescence imaging. A primary objective of this research is to establish exchange rate-limiting mechanisms under pathologic conditions associated with middle ear pressure dysregulation, Eustachian tube function and the disease state of otitis media.

Soft Tissue Biomechanics Motivated by the study of pathology and tissue engineering, researchers have leveraged computational-based predictive models to gain insight into the complex biomechanical response of soft tissues. Simulation approaches have become an essential component in cardiovascular research. Computational models have been used to advance basic science, develop engineered tissue alternatives and guide medical device development. Dr. Schmidt’s research has developed a constitutive model based on the characterization of the collagen microstructure as is morphology governs load-bearing tissue response. A primary objective of this research has been to guide the design of engineered tissue scaffolds associated with aortic heart valve replacement.

Near Net Shape Materials

Hot isostatic processing is an industrial metal powder forming process aimed at the manufacturing of high performance mechanical parts. The processing involves the densification of a metal powder preform under elevated pressure and temperature conditions. Central to the process is the ability to achieve final part dimensions or “near-net-shape,” as minimization of traditional machining is a primary objective of the processing strategy. Research has developed a constitutive material tailored to the densification of high performance alloys. The simulation tool provides a foundation to explore the complex relationships linking preform geometry and processing parameters with final part shape. This generalized approach can be leveraged to explore densification behavior of preforms developed using additive manufacturing techniques.

120

DEPARTMENT OF MECHANICAL ENGINEERING AND MATERIALS SCIENCE


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Wei Xiong, PhD, D.Eng

37min
pages 127-146

Jörg M.K. Wiezorek, PhD

2min
page 126

Guofeng Wang, PhD

2min
page 125

Jeffrey Vipperman, PhD

2min
page 124

Albert C. To, PhD

1min
page 123

Inanc Senocak, PhD

1min
page 121

Patrick Smolinski, PhD

1min
page 122

Jung-Kun Lee, PhD

3min
page 117

Ian Nettleship, PhD

2min
page 119

David Schmidt, PhD

2min
page 120

Scott X. Mao, PhD

2min
page 118

Tevis D. B. Jacobs, PhD

1min
page 116

Katherine Hornbostel, PhD

1min
page 115

Daniel G. Cole, PhD, PE

2min
page 114

William W. Clark, PhD

2min
page 113

Heng Ban, PhD, PE

2min
page 110

Minking K. Chyu, PhD

2min
page 112

Markus Chmielus, PhD

1min
page 111

M. Ravi Shankar, PhD

2min
pages 106-108

Jayant Rajgopal, PhD

2min
page 105

Paul W. Leu, PhD

1min
page 102

Lisa M. Maillart, PhD

2min
page 103

Amin Rahimian, PhD

1min
page 104

Youngjae Chun, PhD

3min
page 98

Renee M. Clark, PhD

2min
page 99

Joel M. Haight, PhD, P.E., CIH, CSP

2min
page 100

Daniel R. Jiang, PhD

1min
page 101

Karen M. Bursic, PhD

1min
page 97

Mary Besterfield-Sacre, PhD

2min
page 96

Mostafa Bedewy, PhD

1min
page 95

Minhee Yun, PhD

2min
pages 92-94

Gregory F. Reed, PhD

3min
page 88

Feng Xiong, PhD

2min
page 90

Jun Yang, PhD

3min
page 91

Guangyong Li, PhD

2min
page 86

Inhee Lee, PhD

2min
page 85

Hong Koo Kim, PhD

2min
page 83

Alexis Kwasinski, PhD

2min
page 84

Alex K. Jones, PhD

3min
page 82

Alan D. George, PhD, FIEEE

2min
page 79

Masoud Barati, PhD

2min
page 78

Brandon M. Grainger, PhD

2min
page 80

Mai Abdelhakim, PhD

1min
page 77

Radisav Vidic, PhD

2min
pages 75-76

Piervincenzo Rizzo, PhD

2min
page 73

Aleksandar Stevanovic, PhD, P.E., FASCE

2min
page 74

Carla Ng, PhD

2min
page 72

Lei Fang, PhD

3min
page 65

Alessandro Fascetti, PhD

2min
page 66

Sarah Haig, PhD

2min
page 68

Xu Liang, PhD

2min
page 70

Jeen-Shang Lin, PhD, P.E

2min
page 71

Andrew P. Bunger, PhD

2min
page 64

Melissa Bilec, PhD

2min
page 63

Judith C. Yang, PhD

2min
pages 60-62

Götz Veser, PhD

2min
page 58

Jason E. Shoemaker, PhD

1min
page 56

Tagbo Niepa, PhD

2min
page 54

Christopher E. Wilmer, PhD

1min
page 59

Sachin S. Velankar, PhD

2min
page 57

Giannis Mpourmpakis, PhD

2min
page 53

Badie Morsi, PhD

3min
page 52

James R. McKone, PhD

1min
page 51

Steve R. Little, PhD

2min
page 50

J. Karl Johnson, PhD

2min
page 47

John A. Keith, PhD

2min
page 48

Susan Fullerton, PhD

2min
page 46

Lei Li, PhD

1min
page 49

Robert M. Enick, PhD

2min
page 45

Eric J. Beckman, PhD

2min
page 44

David A. Vorp, PhD

2min
page 37

Jonathan Vande Geest, PhD

1min
page 36

Justin S. Weinbaum, PhD

1min
page 38

Ipsita Banerjee, PhD

2min
page 43

George Stetten, MD, PhD

2min
page 34

Savio L-Y. Woo, PhD, D.Sc., D.Eng

2min
page 39

Gelsy Torres-Oviedo, PhD

3min
page 35

Ioannis Zervantonakis, PhD

2min
pages 40-42

Mark Redfern, PhD

2min
page 29

Spandan Maiti, PhD

2min
page 28

Partha Roy, PhD

2min
page 30

Sanjeev G. Shroff, PhD

2min
page 33

Warren C. Ruder, PhD

1min
page 31

Joseph Thomas Samosky, PhD

2min
page 32

Patrick J. Loughlin, PhD

2min
page 27

Prashant N. Kumta, PhD

2min
page 26

Mangesh Kulkarni, PhD

1min
page 25

Takashi “TK” Kozai, PhD

2min
page 24

Alan D. Hirschman, PhD

1min
page 21

Tamer S. Ibrahim, PhD

5min
page 22

Mark Gartner, PhD

1min
page 20

Bistra Iordanova, PhD

1min
page 23

Richard E. Debski, PhD

1min
page 17

Neeraj J. Gandhi, PhD

2min
page 19

William Federspiel, PhD

2min
page 18

Lance A. Davidson, PhD

2min
page 16

Aaron Batista, PhD

4min
page 9

Rakié Cham, PhD

2min
page 13

Bryan N. Brown, PhD

1min
page 12

Tracy Cui, PhD

2min
page 14

Kurt E. Beschorner, PhD

2min
page 10

Moni Kanchan Datta, PhD

2min
page 15

Harvey Borovetz, PhD

1min
page 11

Steven Abramowitch, PhD

2min
page 8
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.