2019 Swanson School Summary of Faculty Research

Page 33

BIOENGINEERING

Sanjeev G. Shroff, PhD

302 Benedum Hall | 3700 O’Hara Street | Pittsburgh, PA 15261

Chair Distinguished Professor of and McGinnis Chair in Bioengineering Professor of Medicine

P: 412-624-2095 sshroff@pitt.edu

Cardiovascular Systems Laboratory Our research interests are focused on three areas: (1) Relationships between left ventricular mechano-energetic function and underlying cellular processes, with a special emphasis on contractile and regulatory proteins and post-translational regulation of cardiac contraction (e.g., via phosphorylation or acetylation). Whole heart, isolated muscle (intact and detergent-skinned), and single cell experiments are performed using various animal models, including transgenic mice. (2) The role of pulsatile arterial load (vascular stiffness in particular) in cardiovascular function and potential therapeutic applications of vascular stiffness-modifying drugs

and/or hormones (e.g., relaxin). Novel noninvasive measurement techniques are used to conduct longitudinal human studies, which are complemented by in vivo and in vitro vascular and cardiac studies with animal models. (3) The role of regional contraction dyssynchrony in global ventricular mechanics and energetics. In addition to basic research, we work on developing novel mathematical models of biological systems for scientific inquiry, education, and engineering design. Two ongoing research projects are described below.

Post-translational Regulation of Cardiac Muscle Contraction

Phosphorylation-mediated regulation of cardiac muscle contraction has been studied extensively. Our group has been focusing on cardiac Troponin I (cTnI), especially the effects of PKA- vs. PKC-mediated cTnI phosphorylation on cardiac contraction under normal and pathological conditions.1,2 In collaboration with the Gupta laboratory (University of Chicago), we discovered a completely new post-translational modification, myofilament protein acetylation, that can regulate cardiac muscle contraction as potently as phosphorylation ( acetylation ==> myofilament calcium sensitivity for force generation).3,4 Experiments are currently underway to determine the biophysical mechanisms responsible for this novel contractile regulation and to examine its physiological significance under in vivo conditions. This basic science information regarding the post-translational regulation of contraction is being used to develop novel inotropic therapies. Role of Relaxin in the Cardiovascular System

Our group has been working on examining the role of relaxin, traditionally considered to be a pregnancy-associated hormone, in the cardiovascular system. We have shown that exogenous relaxin administration produces significant vasodilation ( systemic vascular resistance) and vasorelaxation ( global arterial compliance) in both male and female animals.5 Furthermore, relaxin-1 and its receptor mRNA are expressed in vascular tissues obtained from various mammals of both sexes, leading us to propose that the relaxin ligand-receptor system acts locally to regulate arterial function and the loss of one or both of these components may form the molecular basis of vascular aging.6 We and others have shown that relaxin is a potent anti-fibrotic agent. In collaboration with the Salama laboratory (University of Pittsburgh), we recently showed that relaxin administration completely suppressed induced atrial fibrillation in aged spontaneously hypertensive rats and both the reversal of myocardial fibrosis and an increase in myocyte sodium current contributed to this suppression.7 Current studies are aimed at further examining the therapeutic potential of relaxin in fibrosis-associated cardiovascular diseases (e.g., diastolic heart failure, atrial fibrillation). 1. MacGowan G, et al. Cardiovasc Res. 63:245-255, 2004. 2. Kirk JA, et al. Circ Res. 105:1232-1239, 2009. 3. Gupta MP, et al. J Biol Chem. 283 (15):10135-10146, 2008. 4. Samant SA, et al. J Biol Chem. 290:15559-15569, 2015. DEPARTMENT OF BIOENGINEERING

5. Conrad KP, Shroff SG. Curr Hypertens Rep. 13:409-420, 2011. 6. Novak J, et al. FASEB J. 20:2352-2362, 2006. 7. Parikh A, et al. Circ Res. 113:313-321, 2013.

33


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Wei Xiong, PhD, D.Eng

37min
pages 127-146

Jörg M.K. Wiezorek, PhD

2min
page 126

Guofeng Wang, PhD

2min
page 125

Jeffrey Vipperman, PhD

2min
page 124

Albert C. To, PhD

1min
page 123

Inanc Senocak, PhD

1min
page 121

Patrick Smolinski, PhD

1min
page 122

Jung-Kun Lee, PhD

3min
page 117

Ian Nettleship, PhD

2min
page 119

David Schmidt, PhD

2min
page 120

Scott X. Mao, PhD

2min
page 118

Tevis D. B. Jacobs, PhD

1min
page 116

Katherine Hornbostel, PhD

1min
page 115

Daniel G. Cole, PhD, PE

2min
page 114

William W. Clark, PhD

2min
page 113

Heng Ban, PhD, PE

2min
page 110

Minking K. Chyu, PhD

2min
page 112

Markus Chmielus, PhD

1min
page 111

M. Ravi Shankar, PhD

2min
pages 106-108

Jayant Rajgopal, PhD

2min
page 105

Paul W. Leu, PhD

1min
page 102

Lisa M. Maillart, PhD

2min
page 103

Amin Rahimian, PhD

1min
page 104

Youngjae Chun, PhD

3min
page 98

Renee M. Clark, PhD

2min
page 99

Joel M. Haight, PhD, P.E., CIH, CSP

2min
page 100

Daniel R. Jiang, PhD

1min
page 101

Karen M. Bursic, PhD

1min
page 97

Mary Besterfield-Sacre, PhD

2min
page 96

Mostafa Bedewy, PhD

1min
page 95

Minhee Yun, PhD

2min
pages 92-94

Gregory F. Reed, PhD

3min
page 88

Feng Xiong, PhD

2min
page 90

Jun Yang, PhD

3min
page 91

Guangyong Li, PhD

2min
page 86

Inhee Lee, PhD

2min
page 85

Hong Koo Kim, PhD

2min
page 83

Alexis Kwasinski, PhD

2min
page 84

Alex K. Jones, PhD

3min
page 82

Alan D. George, PhD, FIEEE

2min
page 79

Masoud Barati, PhD

2min
page 78

Brandon M. Grainger, PhD

2min
page 80

Mai Abdelhakim, PhD

1min
page 77

Radisav Vidic, PhD

2min
pages 75-76

Piervincenzo Rizzo, PhD

2min
page 73

Aleksandar Stevanovic, PhD, P.E., FASCE

2min
page 74

Carla Ng, PhD

2min
page 72

Lei Fang, PhD

3min
page 65

Alessandro Fascetti, PhD

2min
page 66

Sarah Haig, PhD

2min
page 68

Xu Liang, PhD

2min
page 70

Jeen-Shang Lin, PhD, P.E

2min
page 71

Andrew P. Bunger, PhD

2min
page 64

Melissa Bilec, PhD

2min
page 63

Judith C. Yang, PhD

2min
pages 60-62

Götz Veser, PhD

2min
page 58

Jason E. Shoemaker, PhD

1min
page 56

Tagbo Niepa, PhD

2min
page 54

Christopher E. Wilmer, PhD

1min
page 59

Sachin S. Velankar, PhD

2min
page 57

Giannis Mpourmpakis, PhD

2min
page 53

Badie Morsi, PhD

3min
page 52

James R. McKone, PhD

1min
page 51

Steve R. Little, PhD

2min
page 50

J. Karl Johnson, PhD

2min
page 47

John A. Keith, PhD

2min
page 48

Susan Fullerton, PhD

2min
page 46

Lei Li, PhD

1min
page 49

Robert M. Enick, PhD

2min
page 45

Eric J. Beckman, PhD

2min
page 44

David A. Vorp, PhD

2min
page 37

Jonathan Vande Geest, PhD

1min
page 36

Justin S. Weinbaum, PhD

1min
page 38

Ipsita Banerjee, PhD

2min
page 43

George Stetten, MD, PhD

2min
page 34

Savio L-Y. Woo, PhD, D.Sc., D.Eng

2min
page 39

Gelsy Torres-Oviedo, PhD

3min
page 35

Ioannis Zervantonakis, PhD

2min
pages 40-42

Mark Redfern, PhD

2min
page 29

Spandan Maiti, PhD

2min
page 28

Partha Roy, PhD

2min
page 30

Sanjeev G. Shroff, PhD

2min
page 33

Warren C. Ruder, PhD

1min
page 31

Joseph Thomas Samosky, PhD

2min
page 32

Patrick J. Loughlin, PhD

2min
page 27

Prashant N. Kumta, PhD

2min
page 26

Mangesh Kulkarni, PhD

1min
page 25

Takashi “TK” Kozai, PhD

2min
page 24

Alan D. Hirschman, PhD

1min
page 21

Tamer S. Ibrahim, PhD

5min
page 22

Mark Gartner, PhD

1min
page 20

Bistra Iordanova, PhD

1min
page 23

Richard E. Debski, PhD

1min
page 17

Neeraj J. Gandhi, PhD

2min
page 19

William Federspiel, PhD

2min
page 18

Lance A. Davidson, PhD

2min
page 16

Aaron Batista, PhD

4min
page 9

Rakié Cham, PhD

2min
page 13

Bryan N. Brown, PhD

1min
page 12

Tracy Cui, PhD

2min
page 14

Kurt E. Beschorner, PhD

2min
page 10

Moni Kanchan Datta, PhD

2min
page 15

Harvey Borovetz, PhD

1min
page 11

Steven Abramowitch, PhD

2min
page 8
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.