CHEMICAL & PETROLEUM ENGINEERING 807 Benedum Hall | 3700 O’Hara Street | Pittsburgh, PA 15261 P:412-624-9649 C:412-277-0154 rme@pitt.edu
Robert M. Enick, PhD Bayer Professor Vice Chair for Research, ChE & PetE NETL Researcher
High Pressure Phase Behavior and Viscosity Related to Enhanced Oil Recovery, Carbon Capture and Supercritical Fluid Technology Our research lab focuses on the thermodynamic and transport properties of high pressure systems. For example, we are equipped with a high pressure (10,000 psi), low-high temperature (-4 to 356oF), windowed, agitated, invertible, variable-volume cell that allows direct observation of the phase behavior of gases, liquids and solids. This enables us to determine the optimal conditions for high pressure processes. For example, we can determine the pressure required for a solvent such as CO2 or propane to become miscible with a crude oil, or what types of polymeric liquids are best suited for selectively capturing CO2 from a high pressure that also contains water vapor and hydrogen, or the best temperature-pressure conditions needed to remove a contaminant from a commercial motor oil product using supercritical CO2. Our lab is also equipped with the world’s highest temperaturepressure (500oF - 40000 psi) rolling ball viscometer, which is mounted on tilting tables. This apparatus allows us to precisely measure the viscosity of hydrocarbons (e.g. hexane, decane) at extreme conditions that are representative of those found in the deepest petroleum-producing formations in the world. We also have a unique windowed, high pressure reactor equipped with a high speed (6000 rpm) emulsification mixer for particle/fluid processing studies.
Design of CO2-soluble and CO2-philic Compounds for Chemical and Petroleum Engineering Applications Dr. Enick and Dr. Beckman have teamed together to design, synthesize, purify, characterize and evaluate novel compounds that have been engineered to improve the performance of high pressure CO2. For example, supercritical CO2 (T > 88oF) is used extensively to recover crude oil from underground layers of porous sandstone or carbonate rock in the Unites States. Although CO2 is a good solvent for oil recovery, its viscosity is so low that it tends to "finger" from the injection well through the rock towards the producing wells, rather than uniformly sweeping the porous volume of the rock layer. Therefore Enick and Beckman are designing high molecular weight polymers DEPARTMENT OF CHEMICAL AND PETROLEUM ENGINEERING
and small associating molecules that can not only dissolve in dense CO2, but also (at very dilute concentrations of ~0.1wt%) increase the CO2 viscosity to a value that is comparable to the oil viscosity. Our lab has also identified and designed liquid polymeric solvents that can be used to selectively remove CO2 (but not water vapor or hydrogen) from a high temperature, high pressure stream in an IGCC power plant (a novel high efficiency power plant). These polymers (e.g. silicone oil) interact favorably with CO2, but have little or no affinity for water or hydrogen.
45