2019 Swanson School Summary of Faculty Research

Page 48

CHEMICAL & PETROLEUM ENGINEERING

John A. Keith, PhD

804 Benedum Hall | 3700 O’Hara Street | Pittsburgh, PA 15261

R.K. Mellon Faculty Fellow in Energy Associate Professor

P: 412-624-7016 jakeith@pitt.edu www.klic.pitt.edu

Keith Lab in Computational Catalysis John A. Keith is the R.K. Mellon Faculty Fellow in Energy, a tenure-track assistant professor in the Chemical and Petroleum Engineering Department in the Swanson School of Engineering. His research interests are in the first-principles based computational modeling of reaction mechanisms, Carbon Neutral Chemical and Fuel Generation: Our society heavily relies on energy dense liquid fuels, but there is a pressing need to sustainably produce carbon neutral liquid fuels (CNLFs). Several independent researchers have reported energetically efficient CO2 reduction (CO2R) into methanol, but there are many open questions about the mechanisms for these processes. Our group aims to elucidate if and how this chemistry can occur. Our central hypothesis is that that if hydrogen transfer agents can catalyze CO2R, they do so serendipitously in specific electrochemical environments that facilitate unsuspected modes of hydrogenation. Our technique is to computationally characterize (electro) chemical phase diagrams for hypothetical catalysts to identify thermodynamically accessible states at ambient conditions as well as energetically efficient reaction pathways.

particular those pertaining to homogeneous and heterogeneous catalytic transformations for energy and sustainability. Dr. Keith has ~20 years of experience in computational chemistry modeling atomic scale reaction mechanisms. Current research projects include:

Modeling Local Solvation Effects: Computationally modeling atomic scale chemical reaction mechanisms in solvents is very challenging. The reliable and robust schemes usually involve dynamics-based treatments with explicit solvation models that involve large numbers of electronic structure calculations. While such efforts can be very insightful, they can also bring very large computational costs and/or technical challenges that restrict their use in more complex systems. Our group is developing calculation schemes that can be used to better design environmentally green chelates and analyze local solvation effects in mixed composition ionic and molten solvents.

Funding: NSF, Pitt MCSI Recent publication: Y. Basdogan and J. A. Keith, “A paramedic treatment for modeling explicitly solvated chemical reaction mechanism,” Chem. Sci. 9 (2018) 5341

Accelerated Methods for High-Throughput Screening of Catalyst Sites: Density functional theory (DFT)-based investigations of hypothetical catalysts are too computationally demanding for wide searches across materials space. We have been developing fast and accurate computational methods to accelerate characterizations of reaction energies and barrier heights across diverse materials space. Funding: R. K. Mellon Foundation, Naval Research Lab Recent publication: K. Saravanan, J. R. Kitchin, O. A. von Lilienfeld, J. A. Keith, “Alchemical Predictions for Computational Catalysis: Potential and Limitations,” J. Phys. Chem. Lett., 2017, 8, 5002-5007.

Funding: ACS Petroleum Research Fund, NSF Recent publication: S. Ilic et al., “Thermodynamic Hydricities of Biomimetic Organic Hydride Donors,” J. Am. Chem. Soc. 140 (2018) 4569.

48

DEPARTMENT OF CHEMICAL AND PETROLEUM ENGINEERING


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Wei Xiong, PhD, D.Eng

37min
pages 127-146

Jörg M.K. Wiezorek, PhD

2min
page 126

Guofeng Wang, PhD

2min
page 125

Jeffrey Vipperman, PhD

2min
page 124

Albert C. To, PhD

1min
page 123

Inanc Senocak, PhD

1min
page 121

Patrick Smolinski, PhD

1min
page 122

Jung-Kun Lee, PhD

3min
page 117

Ian Nettleship, PhD

2min
page 119

David Schmidt, PhD

2min
page 120

Scott X. Mao, PhD

2min
page 118

Tevis D. B. Jacobs, PhD

1min
page 116

Katherine Hornbostel, PhD

1min
page 115

Daniel G. Cole, PhD, PE

2min
page 114

William W. Clark, PhD

2min
page 113

Heng Ban, PhD, PE

2min
page 110

Minking K. Chyu, PhD

2min
page 112

Markus Chmielus, PhD

1min
page 111

M. Ravi Shankar, PhD

2min
pages 106-108

Jayant Rajgopal, PhD

2min
page 105

Paul W. Leu, PhD

1min
page 102

Lisa M. Maillart, PhD

2min
page 103

Amin Rahimian, PhD

1min
page 104

Youngjae Chun, PhD

3min
page 98

Renee M. Clark, PhD

2min
page 99

Joel M. Haight, PhD, P.E., CIH, CSP

2min
page 100

Daniel R. Jiang, PhD

1min
page 101

Karen M. Bursic, PhD

1min
page 97

Mary Besterfield-Sacre, PhD

2min
page 96

Mostafa Bedewy, PhD

1min
page 95

Minhee Yun, PhD

2min
pages 92-94

Gregory F. Reed, PhD

3min
page 88

Feng Xiong, PhD

2min
page 90

Jun Yang, PhD

3min
page 91

Guangyong Li, PhD

2min
page 86

Inhee Lee, PhD

2min
page 85

Hong Koo Kim, PhD

2min
page 83

Alexis Kwasinski, PhD

2min
page 84

Alex K. Jones, PhD

3min
page 82

Alan D. George, PhD, FIEEE

2min
page 79

Masoud Barati, PhD

2min
page 78

Brandon M. Grainger, PhD

2min
page 80

Mai Abdelhakim, PhD

1min
page 77

Radisav Vidic, PhD

2min
pages 75-76

Piervincenzo Rizzo, PhD

2min
page 73

Aleksandar Stevanovic, PhD, P.E., FASCE

2min
page 74

Carla Ng, PhD

2min
page 72

Lei Fang, PhD

3min
page 65

Alessandro Fascetti, PhD

2min
page 66

Sarah Haig, PhD

2min
page 68

Xu Liang, PhD

2min
page 70

Jeen-Shang Lin, PhD, P.E

2min
page 71

Andrew P. Bunger, PhD

2min
page 64

Melissa Bilec, PhD

2min
page 63

Judith C. Yang, PhD

2min
pages 60-62

Götz Veser, PhD

2min
page 58

Jason E. Shoemaker, PhD

1min
page 56

Tagbo Niepa, PhD

2min
page 54

Christopher E. Wilmer, PhD

1min
page 59

Sachin S. Velankar, PhD

2min
page 57

Giannis Mpourmpakis, PhD

2min
page 53

Badie Morsi, PhD

3min
page 52

James R. McKone, PhD

1min
page 51

Steve R. Little, PhD

2min
page 50

J. Karl Johnson, PhD

2min
page 47

John A. Keith, PhD

2min
page 48

Susan Fullerton, PhD

2min
page 46

Lei Li, PhD

1min
page 49

Robert M. Enick, PhD

2min
page 45

Eric J. Beckman, PhD

2min
page 44

David A. Vorp, PhD

2min
page 37

Jonathan Vande Geest, PhD

1min
page 36

Justin S. Weinbaum, PhD

1min
page 38

Ipsita Banerjee, PhD

2min
page 43

George Stetten, MD, PhD

2min
page 34

Savio L-Y. Woo, PhD, D.Sc., D.Eng

2min
page 39

Gelsy Torres-Oviedo, PhD

3min
page 35

Ioannis Zervantonakis, PhD

2min
pages 40-42

Mark Redfern, PhD

2min
page 29

Spandan Maiti, PhD

2min
page 28

Partha Roy, PhD

2min
page 30

Sanjeev G. Shroff, PhD

2min
page 33

Warren C. Ruder, PhD

1min
page 31

Joseph Thomas Samosky, PhD

2min
page 32

Patrick J. Loughlin, PhD

2min
page 27

Prashant N. Kumta, PhD

2min
page 26

Mangesh Kulkarni, PhD

1min
page 25

Takashi “TK” Kozai, PhD

2min
page 24

Alan D. Hirschman, PhD

1min
page 21

Tamer S. Ibrahim, PhD

5min
page 22

Mark Gartner, PhD

1min
page 20

Bistra Iordanova, PhD

1min
page 23

Richard E. Debski, PhD

1min
page 17

Neeraj J. Gandhi, PhD

2min
page 19

William Federspiel, PhD

2min
page 18

Lance A. Davidson, PhD

2min
page 16

Aaron Batista, PhD

4min
page 9

Rakié Cham, PhD

2min
page 13

Bryan N. Brown, PhD

1min
page 12

Tracy Cui, PhD

2min
page 14

Kurt E. Beschorner, PhD

2min
page 10

Moni Kanchan Datta, PhD

2min
page 15

Harvey Borovetz, PhD

1min
page 11

Steven Abramowitch, PhD

2min
page 8
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.