CHEMICAL & PETROLEUM ENGINEERING 906 Benedum Hall | 3700 O’Hara Street | Pittsburgh, PA 15261
Lei Li, PhD Associate Professor
P: 412-624-3691 lel55@pitt.edu
Li Lab: Surface, Interface and 2D Materials Our research focuses on surface, interface and 2D materials. We are interested in the molecular-level structure and dynamics at the interfaces and how they impact many important properties such as wetting and friction.
Ionic Liquid (IL) Nanofilms Ionic liquids have attracted extensive attention in the past decades due their “green” nature and excellent physiochemical properties. The interface between ionic liquids and various solids are critical for applications in energy storage, electrochemistry, nanofluids and lubrication. We are uncovering the static and dynamic properties of ionic liquids confined to solid surfaces. (Gong, X.; Frankert, S.; Wang, Y. and Li, L. Chem. Commun. 2013, 49(71), 7804)
Surface Pproperties of Graphene and 2D Materials Graphene is an atomically thin carbon atom lattice that has high thermal conductivity, high mechanical strength, and unique electrical properties. It is essential to understand the surface property for its future applications. In close collaboration with Prof. Haitao Liu’s research group in the Chemistry Department at Pitt., we are exploring the intrinsic wettability of CVD graphene and relating it to the adhesion, tribology and other properties. We aims to develop reliable coatings based on graphene and understand how to improve the reliability of Graphene-based device. (Li, Z. et. al. Nature Mater. 2013, 12, 925.; Kozbial, A. et.al. Carbon, 2014, 74, 218; Kozbial, A. et.al. Langmuir, 2014, 30(28), 8598)
Nanometer Lubricants for Hard Disk Drives (HDD) On magnetic media, there is a nanometerthick lubricant that provides low friction, anti-wear and anti-corrosion functions. The next-generation HDD technologies require the lubricant to be more thermally stable and cost-effective. We are developing novel materials to address the challenges. (Wang Y.; Sun J. and Li L. Langmuir; 2012, 28, 6151; Wang Y.; Williams K. and Li L. Macromol. Chem. Physic. 2011, 212, 2685)
Simultaneous Oleophobicity/Hydrophilicity Simultaneous oleophobic/hydrophilic coatings are critical for applications in anti-fogging, self-cleaning and oil-water separation. However, the underlying mechanisms remain clear. We are investigating the governing mechanisms and exploring the approaches in real-life applications. (Li L.; Wang Y.; Gallaschun C.; Risch T. and Sun J. J. Mater. Chem., 2012, 22(33), 16719) DEPARTMENT OF CHEMICAL AND PETROLEUM ENGINEERING
49