CIVIL & ENVIRONMENTAL ENGINEERING
Melissa Bilec, PhD
153 Benedum Hall | 3700 O’Hara Street | Pittsburgh, PA 15261
Professor Assistant Director, Mascaro Center for Sustainable Innovation
P: 412-648-8075 mbilec@pitt.edu https://www.bilecbese.org/
Dr. Bilec is an associate professor in the Swanson School of Engineering’s Department of Civil and Environmental Engineering. Dr. Bilec’s research program focuses on sustainable healthcare, the built environment, and life cycle assessment. She is interested in improving the overall environmental performance of buildings while connecting the occupants in a more thoughtful manner. She is the Principal Investigator in a multi-disciplinary and multiinstitutional research project, NSF EFRI-Barriers, Understanding, Integration – Life cycle Development (BUILD). She has worked in the sustainable engineering arena since 2004. As the assistant director of education outreach in the Mascaro Center for Sustainable Innovation, Pitt’s center for green design, she translates research to community outreach programs and develops sustainable engineering programs for K-12 education.
The Built Environment and Life Cycle Assessment Buildings are recognized as a technological sector where large improvements in sustainability-related categories are achievable. The question of what is environmentally sustainable is best addressed through the use of life cycle assessment (LCA). Indoor Environmental Quality – Most LCAs do not include the building’s direct impacts on its occupants, though these impacts also occur primarily during the use phase and can be significant. For commercial buildings, some of the impacts on occupants may decrease their productivity, leading to lower revenue or otherwise reducing the owner’s financial return on investment. Dynamic LCA – The long service life of buildings also introduces a need to examine the possibility of changes over time. However, the current state of the practice in LCA is to assume a static, unchanging set of values for the duration of the use phase, due to the additional data requirements for modeling system dynamics and generating multiple scenarios. Recent development in sensing and building automation technologies indicates that the additional data requirements of dynamic life cycle modeling may be within reach. Real-time measurements of building requirements such as energy usage and indoor air quality are already implemented in some automation and control systems. The needs of a sensor network used for life cycle modeling may not extend significantly beyond those for a building system diagnostic and control network. Such a network provides the dynamic building operations portion of the LCA database; when coupled with time-dependent information on external industrial and environmental systems, it could give true life cycle updates in real time.
Sustainable Healthcare As environmental sustainability increases, the healthcare industry, with its relative size, costs, waste generation, and expected growth, is under pressure to improve its economic, social, and environmental sustainability. With these challenges and growing concerns about the US healthcare industry and the general health of the public, hospitals are called upon to be designed more sustainably and to improve the environmental sustainability of their processes and procedures. In order to implement more environmentally sustainable hospital building design and medical practices, healthcare decision-makers need proper tools and information about the industry’s current environmental footprint, which aspects of hospital design and function contribute most significantly to environmental and human health impacts. DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING
63