ELECTRICAL & COMPUTER ENGINEERING 1238D Benedum Hall | 3700 O’Hara Street | Pittsburgh, PA 15261
Chair Professor R&H Mickle Endowed Chair Director, NSF SHREC Center
P: 412-624-9664 alan.george@pitt.edu
Dr. George joined Pitt in January 2017 as Department Chair, R&H Mickle Endowed Chair, and Professor of Electrical and Computer Engineering. He is Founder and Director of the new NSF Center of Space, Highperformance Reconfigurable Computing (SHREC), a national research center and consortium founded in September 2017 and headquartered at Pitt. SHREC features 30 academic, industry, and government partners working on collaborative research in missioncritical computing. In this field, Dr. George’s research expertise and activities are in high-performance computer architectures, apps, networks, services, systems, and missions, featuring reconfigurable, parallel, distributed, and dependable computing, from satellites to supercomputers.
Alan D. George, PhD, FIEEE
Dr. George is Fellow of the IEEE for contributions in reconfigurable and high-performance computing. He was lead recipient of the 2012 Alexander Schwarzkopf Prize for Technology Innovation by an NSF Industry/University Cooperative Research Center (I/UCRC) for leading the development of Novo-G, the most powerful reconfigurable supercomputer in the world at that time. Dr. George has won a variety of faculty awards, including college scholar and teacher of the year, university teacher of the year, college doctoral advisor of the year, college faculty mentor of the year, university service award, and university productivity award. He has served as principal investigator on research contracts and grants totaling well over $20M and, with his students, authored over 200 refereed journal and conference papers. During his 20 years on the faculty at the University of Florida, he established and led to prominence the computer engineering half of the ECE Department, and he led the university committee that founded the first supercomputer center in school history that has grown to become one of the largest campus facilities in the U.S. One of the hallmarks of Dr. George’s research is demonstrable impact from close collaboration with industry and government partners. His group works closely with NASA, AFRL, NSA, ONR, and other federal agencies, as well as Lockheed Martin, BAE Systems, Harris, Intel, and many other companies on research in mission-critical computing. One recent example is a novel form of hybrid and reconfigurable space computer (called CSP), invented by his group and then adopted by many of these partners. Computing in space is of critical need, since future spacecraft must achieve high performance and reliability in computing to fulfill mission parameters for autonomous sensor processing, guidance, and control. However, computing in space is a daunting challenge, due to the limited resources (power, size, weight) and the hazardous environment (radiation, temperature, vacuum, vibration) of spaceflight. In March 2017, a pair of these CSP space computers with high-resolution camera on the DOD STP-H5 mission became operational on the International Space Station (ISS) and will serve as a research testbed for several years under Pitt control. A second research experiment for Pitt on the ISS, featuring a cluster of CSP space computers and dual high-resolution cameras on the DOD STP-H6 mission, is scheduled for launch in early 2019. Moreover, a series of CSP-based satellites for Earth orbit and lunar flyby are slated for launch in the next few years.
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING
79