2019 Swanson School Summary of Faculty Research

Page 92

ELECTRICAL & COMPUTER ENGINEERING

Minhee Yun, PhD

218 E Benedum Hall | 3700 O’Hara Street | Pittsburgh, PA 15261

Associate Professor Department of Bioengineering (secondary)

P: 412-648-8989 miy16@pitt.edu

Highly Sensitive and Selective Biosensor Development In this research, we have developed polyaniline (PANI)-based biosensors (top figures) for detecting four cardiac biomarkers in serum and human bloods, including Myo, cTnI, CK-MB, or BNP. The PANI was directly fabricated via both electrochemical deposition and chemical synthesis methods between pre-patterned Au electrodes. Hence our polymer growth is a mass producible and reproducible method. For the functionalization of the fabricated PANI (1-D and 2-D structures),

the mAbs of cardiac markers were covalently attached to PANI by a surface immobilization method. After the PANI functionalization, the biosensing of cardiac biomarkers was carried out by measuring the conductance change of the biosensor. The conductance of PANI was monitored in the various conditions of the functionalized PANI, injecting phosphate buffer saline (PBS), bovine serum albumin (BSA), and target biomarkers. The conductance of nanowire can be modulated by the major

carrier accumulation or depletion. The binding between immobilized mAbs and target biomarkers changes the net surface charge of the PANI and induces the carrier accumulation or depletion depending on the values of net surface charge and types of PANI. In addition, the developed biosensor shows non-response of conductance change to BSA or non-target proteins due to the mAbs specificity.

Graphene-Engineered Devices We are investigating graphene-based materials for various device applications. In particular, our current focus is infrared sensor development based on graphene and graphene-oxide materials. The goal of this research is to investigate thermoelectric graphene and thermal graphene oxide (GOx) infrared radiation (IR) sensors that will operate at uncooled temperatures. The specific aims of this research are; (1) understanding of critical parameters for IR detectors, (2) development of thermoelectric IR sensor based on graphene, and (3) development of thermal IR sensor (bolometer) based on GOx. The primary scientific focuses of this research are (i) to identify responsible parameter for producing the wideband IR and backgrounds so that the proposed work will improve the understanding of graphene and GOx properties for IR sensor applications, (ii) to determine the key advantages of the graphene/GOx based IR detector approach that offers inherent broad frequencies and enhanced sensitivities without the need for bulky filters, and (iii) to conduct wide range IR surveys of the thermal emissions from hot objects at room temperature. Current Results: To realize a proof of concept graphene-based IR sensor, we have fabricated thermopile devices using multilayer graphene (MLG) on the top of a freestanding SiNx membrane and established a substantial temperature gradient on the device as shown in the figure (bottom). To demonstrate the IR sensor operation, graphene channels were placed such that long and narrow MLG channels are positioned on free-standing SiNx membrane (hot zone), whereas a wide graphene heat sink is located on the top of Si substrate (cold zone).

92

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Wei Xiong, PhD, D.Eng

37min
pages 127-146

Jörg M.K. Wiezorek, PhD

2min
page 126

Guofeng Wang, PhD

2min
page 125

Jeffrey Vipperman, PhD

2min
page 124

Albert C. To, PhD

1min
page 123

Inanc Senocak, PhD

1min
page 121

Patrick Smolinski, PhD

1min
page 122

Jung-Kun Lee, PhD

3min
page 117

Ian Nettleship, PhD

2min
page 119

David Schmidt, PhD

2min
page 120

Scott X. Mao, PhD

2min
page 118

Tevis D. B. Jacobs, PhD

1min
page 116

Katherine Hornbostel, PhD

1min
page 115

Daniel G. Cole, PhD, PE

2min
page 114

William W. Clark, PhD

2min
page 113

Heng Ban, PhD, PE

2min
page 110

Minking K. Chyu, PhD

2min
page 112

Markus Chmielus, PhD

1min
page 111

M. Ravi Shankar, PhD

2min
pages 106-108

Jayant Rajgopal, PhD

2min
page 105

Paul W. Leu, PhD

1min
page 102

Lisa M. Maillart, PhD

2min
page 103

Amin Rahimian, PhD

1min
page 104

Youngjae Chun, PhD

3min
page 98

Renee M. Clark, PhD

2min
page 99

Joel M. Haight, PhD, P.E., CIH, CSP

2min
page 100

Daniel R. Jiang, PhD

1min
page 101

Karen M. Bursic, PhD

1min
page 97

Mary Besterfield-Sacre, PhD

2min
page 96

Mostafa Bedewy, PhD

1min
page 95

Minhee Yun, PhD

2min
pages 92-94

Gregory F. Reed, PhD

3min
page 88

Feng Xiong, PhD

2min
page 90

Jun Yang, PhD

3min
page 91

Guangyong Li, PhD

2min
page 86

Inhee Lee, PhD

2min
page 85

Hong Koo Kim, PhD

2min
page 83

Alexis Kwasinski, PhD

2min
page 84

Alex K. Jones, PhD

3min
page 82

Alan D. George, PhD, FIEEE

2min
page 79

Masoud Barati, PhD

2min
page 78

Brandon M. Grainger, PhD

2min
page 80

Mai Abdelhakim, PhD

1min
page 77

Radisav Vidic, PhD

2min
pages 75-76

Piervincenzo Rizzo, PhD

2min
page 73

Aleksandar Stevanovic, PhD, P.E., FASCE

2min
page 74

Carla Ng, PhD

2min
page 72

Lei Fang, PhD

3min
page 65

Alessandro Fascetti, PhD

2min
page 66

Sarah Haig, PhD

2min
page 68

Xu Liang, PhD

2min
page 70

Jeen-Shang Lin, PhD, P.E

2min
page 71

Andrew P. Bunger, PhD

2min
page 64

Melissa Bilec, PhD

2min
page 63

Judith C. Yang, PhD

2min
pages 60-62

Götz Veser, PhD

2min
page 58

Jason E. Shoemaker, PhD

1min
page 56

Tagbo Niepa, PhD

2min
page 54

Christopher E. Wilmer, PhD

1min
page 59

Sachin S. Velankar, PhD

2min
page 57

Giannis Mpourmpakis, PhD

2min
page 53

Badie Morsi, PhD

3min
page 52

James R. McKone, PhD

1min
page 51

Steve R. Little, PhD

2min
page 50

J. Karl Johnson, PhD

2min
page 47

John A. Keith, PhD

2min
page 48

Susan Fullerton, PhD

2min
page 46

Lei Li, PhD

1min
page 49

Robert M. Enick, PhD

2min
page 45

Eric J. Beckman, PhD

2min
page 44

David A. Vorp, PhD

2min
page 37

Jonathan Vande Geest, PhD

1min
page 36

Justin S. Weinbaum, PhD

1min
page 38

Ipsita Banerjee, PhD

2min
page 43

George Stetten, MD, PhD

2min
page 34

Savio L-Y. Woo, PhD, D.Sc., D.Eng

2min
page 39

Gelsy Torres-Oviedo, PhD

3min
page 35

Ioannis Zervantonakis, PhD

2min
pages 40-42

Mark Redfern, PhD

2min
page 29

Spandan Maiti, PhD

2min
page 28

Partha Roy, PhD

2min
page 30

Sanjeev G. Shroff, PhD

2min
page 33

Warren C. Ruder, PhD

1min
page 31

Joseph Thomas Samosky, PhD

2min
page 32

Patrick J. Loughlin, PhD

2min
page 27

Prashant N. Kumta, PhD

2min
page 26

Mangesh Kulkarni, PhD

1min
page 25

Takashi “TK” Kozai, PhD

2min
page 24

Alan D. Hirschman, PhD

1min
page 21

Tamer S. Ibrahim, PhD

5min
page 22

Mark Gartner, PhD

1min
page 20

Bistra Iordanova, PhD

1min
page 23

Richard E. Debski, PhD

1min
page 17

Neeraj J. Gandhi, PhD

2min
page 19

William Federspiel, PhD

2min
page 18

Lance A. Davidson, PhD

2min
page 16

Aaron Batista, PhD

4min
page 9

Rakié Cham, PhD

2min
page 13

Bryan N. Brown, PhD

1min
page 12

Tracy Cui, PhD

2min
page 14

Kurt E. Beschorner, PhD

2min
page 10

Moni Kanchan Datta, PhD

2min
page 15

Harvey Borovetz, PhD

1min
page 11

Steven Abramowitch, PhD

2min
page 8
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.