2021 Ingenium: Journal of Undergraduate Research

Page 102

Assessment of luminal fillers in nerve guidance conduits for promoting regeneration following peripheral nerve injury Carol Vinskia, Tyler Medera,b, Bryan Brown, Ph.D.a,b,c Department of Bioengineering, bMcGowan Institute for Regenerative Medicine, c Renerva, LLC

a

Carol Vinski is a native Pittsburgher. Her passion for the improvement of medicine and healthcare motivates her to become a biomechanical engineer in the field of prosthetics.

Carol Vinski

Dr. Bryan Brown is an Associate Professor in the Department of Bioengineering with secondary appointments in the Department of Obstetrics, Gynecology, and Reproductive Sciences and the Clinical and Translational Science Institute at the University of Pittsburgh. He is also a Bryan Brown, Ph.D. core faculty member of the McGowan Institute for Regenerative Medicine where he serves as the Director of Educational Outreach. Dr. Brown is also an Adjunct Assistant Professor of Clinical Sciences at the Cornell University College of Veterinary Medicine and Chief Technology Officer of Renerva, LLC, a Pittsburgh-based start-up company.

Significance Statement

Autologous grafting, the current clinical standard to treat peripheral nerve injury (PNI), often results in unsatisfactory nerve healing and always causes a loss of feeling at the donor site. This study analyzes the most effective laboratory nerve guidance conduits and luminal fillers to act as an alternative solution to autografting.

Category Review Paper

Keywords: luminal fillers, nerve guidance conduits, nerve repair, biomechanics of nerves

102 Undergraduate Research at the Swanson School of Engineering

Abstract

Peripheral nerve injury (PNI) is a growing field of scientific research, and transected PNIs are difficult to repair due to the quick buildup of scar tissue blocking axon regeneration. Autologous grafting, the clinical standard of care, can cause loss of feeling at the donor site, and patients may not have enough viable donor tissue to complete this procedure depending on injury severity. To offer an effective alternative to autografting without loss of sensation, nerve guidance conduits (NGCs) are being explored but are not as successful as the clinical standard. Additives to NGC lumen (luminal fillers) are being researched to obtain results at least as successful as the autograft without its limitations. As of yet, no luminal fillers have entered into clinical use. The Brown Lab has previously developed a luminal filler derived from Porcine sciatic Nerve extracellular Matrix (PNM). To better understand how PNM performs in the context of NGC additives as a whole, the present study primarily examines reports of various luminal fillers to determine what characteristics predict success as a result of their application. Secondly, reports analyzing Schwann cell (SC) activity under variable biomechanical stimuli were considered as luminal fillers to provide a mechanical substrate which interacts with SCs. Overall, successful luminal fillers most often contained highly porous and permeable substrates with steep mechanical gradients for maximum SC activity. By utilizing this knowledge, successful luminal fillers and their respective conduits can be used to efficiently heal PNIs to maximize functional returns in patients.


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Index

2min
pages 114-115

u Neural Network-based approximation of model predictive control applied to a flexible shaft servomechanism

13min
pages 107-110

Department of Bioengineering, McGowan Institute for Regenerative Medicine, Renerva, LLC

15min
pages 102-106

u Finite element analysis of stents under radial compression boundary conditions with different material properties

8min
pages 111-113

Analysis of stride segmentation methods to identify heel strike

14min
pages 98-101

Joseph Sukinik, Rosh Bharthi, Sarah Hemler, Kurt Beschorner

13min
pages 94-97

Human Movement and Balance Laboratory, Department of Bioengineering; Falls, Balance, and Injury Research Centre, Neuroscience Research Australia

10min
pages 90-93

u Topological descriptor selection for a quantitative structure-activity relationship (QSAR) model to assess PAH mutagenicity

12min
pages 81-84

Department of Bioengineering, Department of Electrical Engineering, Department of Mechanical Engineering, Innovation, Product Design, and Entrepreneurship Program

12min
pages 85-89

Department of Chemical Engineering, Heart, Lung, Blood, and Vascular Medicine Institute Division of Pulmonary, Allergy and Critical Care Medicine

14min
pages 76-80

u Demonstrating the antibiofouling property of the Clanger cicada wing with ANSYS Fluent simulations

13min
pages 72-75

u Levator Ani muscle dimension changes with gestational and maternal age

11min
pages 64-67

u Bioinformatic analysis of fibroblast-mediated therapy resistance in HER2+ breast cancer

11min
pages 60-63

Department of Bioengineering, Department of Psychiatry, Department of Neurology, Physician Scientist Training Program, University of Pittsburgh School of Medicine

15min
pages 55-59

u Fluid flow simulation of microphysiological knee joint-on-a-chip

14min
pages 49-54

Department of Bioengineering, Division of Vascular Surgery, University of Pittsburgh Medical Center, Department of Surgery, Department of Cardiothoracic Surgery, and Department of Chemical and Petroleum Engineering, McGowan Institute for Regenerative Medicine, and Center for Vascular Remodeling and Regeneration

16min
pages 44-48

Testing the compressive stiffness of endovascular devices

11min
pages 40-43

Department of Bioengineering, Carnegie Mellon University, McGowan Institute of Regenerative Medicine

15min
pages 35-39

Physical Metallurgy & Materials Design Laboratory, Department of Mechanical Engineering & Material Science

13min
pages 25-29

Hardware acceleration of k-means clustering for satellite image compression

15min
pages 20-24

Visualization and Image Analysis (VIA) Laboratory, Department of Bioengineering

16min
pages 30-34

Spike decontamination in local field potential signals from the primate superior colliculus

10min
pages 16-19

u Simulating the effect of different structures and materials on OLED extraction efficiency

8min
pages 13-15

u Representations of population activity during sensorimotor transformation for visually guided eye movements

14min
pages 7-12

Message from the Coeditors in Chief

2min
page 5

A Message from the Associate Dean for Research

3min
page 4
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.