2021 Ingenium: Journal of Undergraduate Research

Page 20

Hardware acceleration of k-means clustering for satellite image compression Francis J. Fattori, Alan D. George Department of Electrical and Computer Engineering

Francis J. Fattori

Francis Fattori is a junior computer engineering student from Oxford, PA with interests in parallel processing methodologies, heterogeneous computing architectures and spacebased computing applications. Upon completing his undergraduate career, Francis hopes to continue conducting research in these areas while pursuing a master’s degree.

Dr. George is Department Chair, R&H Mickle Endowed Chair, and Professor of Electrical and Computer Engineering at the University of Pittsburgh (Pitt), and Fellow of the IEEE. His research interests focus upon high-performance architectures, apps, networks, services, systems, Alan D. George, and missions for reconfigurable, Ph.D. parallel, distributed, and dependable computing, from satellites to supercomputers.

Significance Statement

This article explores the applicability of a hybrid CPU-FPGA system-on-chip design in accelerating a color-quantization application for satellite image compression, highlighting the improvements in both performance and energy efficiency against traditional linear computing methods.

Category: Experimental Research

Key Words: hybrid system-on-chip (SoC) platform, field-programmable gate array (FPGA), parallel computing, space-based computing.

20 Undergraduate Research at the Swanson School of Engineering

Abstract

Image compression is a vital component of remote camera modules on satellites to facilitate file storage and network transfer. K-means clustering is an effective algorithm for lossy image compression, but its computational complexity can render the algorithm inefficient when implemented with serially functioning processors. Issues of execution latency are magnified for space-based embedded platforms, which contain radiation-hardened processors and memory units of lower overall performance and efficiency. This paper introduces a hybrid systemon-chip (SoC) design involving both a Central Processing Unit (CPU) and a Field-Programmable Gate Array (FPGA) to serve as an accelerator for a k-means clustering image-compression application on board satellites. A PYNQ-Z2 development board housing a Xilinx Zynq-7020 SoC was used for application testing. Multiple program executions with various test images revealed that the hybrid accelerator performed k-means clustering roughly 100 times faster than the software-only baseline while consuming only 1.19 % of the energy. The application functioned at a compression ratio of 4:1 and produced output images with only minor losses in image quality.

1. Introduction 1.1 Onboard Image Compression for EO Satellites

Improvements in space camera units have enabled Earth Observation (EO) satellites to capture high-resolution images. In order for these photos to be retained for future use, image information must be stored in onboard memory units and/or downlinked to a database on Earth. However, radiation-tolerant flash memory systems present in most satellites are limited in storage capacity, and typical extraplanetary telecommunication networks do not have a bandwidth capable of downlinking full-resolution, raw images obtained by satellite cameras. Thus, a data-compression protocol is required to encode digital image information using fewer bits than the original representation. Data-compression algorithm classification as lossy or lossless and the respective roles of these algorithm types in onboard image-compression modules is elucidated in [1]. To circumvent the transfer and retention of valueless high-resolution images, common procedure for satellite photo transmission begins with downlinking lossy compressed images for preliminary analysis. Only after the image has been classified as meaningful for the particular application will image information produced by lossless compression be conveyed to ground stations. The work in this paper addresses the first component of this procedure by developing and analyzing a hybrid CPU-FPGA architecture to accelerate a lossy-compression algorithm known as k-means clustering. In alignment with the recommendations of the Consultive Committee for Space Data Systems, most modern satellite image-compression units utilize complex algorithms involving wavelet transforms and bit-plane encoding [2]. Although k-means clustering is more limited in use, it can serve as the foundation of a simple yet flexible


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Index

2min
pages 114-115

u Neural Network-based approximation of model predictive control applied to a flexible shaft servomechanism

13min
pages 107-110

Department of Bioengineering, McGowan Institute for Regenerative Medicine, Renerva, LLC

15min
pages 102-106

u Finite element analysis of stents under radial compression boundary conditions with different material properties

8min
pages 111-113

Analysis of stride segmentation methods to identify heel strike

14min
pages 98-101

Joseph Sukinik, Rosh Bharthi, Sarah Hemler, Kurt Beschorner

13min
pages 94-97

Human Movement and Balance Laboratory, Department of Bioengineering; Falls, Balance, and Injury Research Centre, Neuroscience Research Australia

10min
pages 90-93

u Topological descriptor selection for a quantitative structure-activity relationship (QSAR) model to assess PAH mutagenicity

12min
pages 81-84

Department of Bioengineering, Department of Electrical Engineering, Department of Mechanical Engineering, Innovation, Product Design, and Entrepreneurship Program

12min
pages 85-89

Department of Chemical Engineering, Heart, Lung, Blood, and Vascular Medicine Institute Division of Pulmonary, Allergy and Critical Care Medicine

14min
pages 76-80

u Demonstrating the antibiofouling property of the Clanger cicada wing with ANSYS Fluent simulations

13min
pages 72-75

u Levator Ani muscle dimension changes with gestational and maternal age

11min
pages 64-67

u Bioinformatic analysis of fibroblast-mediated therapy resistance in HER2+ breast cancer

11min
pages 60-63

Department of Bioengineering, Department of Psychiatry, Department of Neurology, Physician Scientist Training Program, University of Pittsburgh School of Medicine

15min
pages 55-59

u Fluid flow simulation of microphysiological knee joint-on-a-chip

14min
pages 49-54

Department of Bioengineering, Division of Vascular Surgery, University of Pittsburgh Medical Center, Department of Surgery, Department of Cardiothoracic Surgery, and Department of Chemical and Petroleum Engineering, McGowan Institute for Regenerative Medicine, and Center for Vascular Remodeling and Regeneration

16min
pages 44-48

Testing the compressive stiffness of endovascular devices

11min
pages 40-43

Department of Bioengineering, Carnegie Mellon University, McGowan Institute of Regenerative Medicine

15min
pages 35-39

Physical Metallurgy & Materials Design Laboratory, Department of Mechanical Engineering & Material Science

13min
pages 25-29

Hardware acceleration of k-means clustering for satellite image compression

15min
pages 20-24

Visualization and Image Analysis (VIA) Laboratory, Department of Bioengineering

16min
pages 30-34

Spike decontamination in local field potential signals from the primate superior colliculus

10min
pages 16-19

u Simulating the effect of different structures and materials on OLED extraction efficiency

8min
pages 13-15

u Representations of population activity during sensorimotor transformation for visually guided eye movements

14min
pages 7-12

Message from the Coeditors in Chief

2min
page 5

A Message from the Associate Dean for Research

3min
page 4
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.