Computer vision methods for tool guidance in a finger-mounted device for the blind Yuxuan Hu, Rene R. Canady, B.S., Roberta Klatzky, Ph.D. and George Stetten, M.D., Ph. D. The Visualization and Image Analysis (VIA) Laboratory, Department of Bioengineering Yuxuan Hu is a Bioengineering senior at the University of Pittsburgh. He will be a graduate student next year at ETH in Zurich studying surgical vision and imaging.
Yuxuan Hu
Rene R. Canady, B.S.
Rene R. Canady received a BS in bioengineering in 2020 from the University of Pittsburgh and is currently pursuing a Ph.D. in Sociology at Washington University, St. Louis. Her research interests include engineering ethnography and racial controversies in health. Roberta Klatzky is a professor of Psychology and Human-Computer Interaction at Carnegie Mellon. She enjoys combining basic research with applications.
Roberta Klatzky, Ph.D.
George Stetten, M.D., Ph.D.
George Stetten is Professor of Bioengineering at the University of Pittsburgh. He directs the Visualization and Image Analysis (VIA) Laboratory and the Music Engineering Laboratory (MEL) and is a fellow in the American Institute for Medical and Biological Engineering.
Significance Statement
Tool handling and close-up operation are challenges for the visually impaired that have not been well addressed by assistive devices. We have come up with novel and computationally efficient computer vision methods for real-time tool detection and target motion classification, to improve on “FingerSight,” a finger-mounted haptic device designed to help the visually impaired complete daily tasks.
Category: Methods
Keywords: Assistive Technology, Haptics, Computer Vision, Image Analysis 30 Undergraduate Research at the Swanson School of Engineering
Abstract
People with visual impairment often find difficulty in performing high precision tasks such as interacting with a target using a tool. We propose a device for the visually impaired that can provide accurate localization of targets via vibratory feedback that makes tool-handling tasks easier. The device is an adaptation of our existing system, “FingerSight,” a finger-mounted device consisting of a camera and four vibrators (tactors) that respond to analysis of images from the camera. We report here on a new design for the hardware and optimization of real-time algorithms for tool detection and motion classification. These include the determination that a duration of tactor vibration of 90 ms yielded a minimum error rate (5%) in tactor identification and that the best parameters for the tool recognition algorithm were threshold = 13, kernel size = 11, yielding an average tracking error of 23 pixels in a 640 x 480 pixel camera frame. Anecdotal results obtained from single healthy blind-folded subject show the device’s functionality as a whole and potential for providing guidance for the visually impaired manipulating tools in real-life scenarios.
1. Introduction
In 2015, approximately 3.22 million people in the United States were visually impaired, while 1.02 million of them were blind. And by 2050, the number of people afflicted by visual impairment is projected to double [1]. Such increasing prevalence of visual impairment has driven scientists and engineers to develop various assistive technologies, many of which utilize computer vision and haptics. Significant progress has been made in the area of user mobility in pedestrian environments. For example, a system using tactors attached to the torso has been developed to localize the user with respect to the surroundings and guide travel while avoiding obstacles [2]. Another study focuses on detecting aerial obstacles with a stereo vision wearable device [3]. However, few solutions have addressed the commonplace problem of finding targets in peripersonal space, i.e., the space within reach where objects can be grasped and manipulated. Our laboratory previously developed a system with a hand mounted binocular cameras and five vibrators to help the user locate nearby targets in 3D space using a depth map generated with computer vision methods [4]. Our present system, “FingerSight,” is a wearable device originally intended to help the visually impaired navigate in the environment and locate targets in peripersonal space. The device, mounted on the finger, contains a camera and a set of vibrators (tactors) that are activated based on computer vision analysis of the real-time camera image. Previous research on this technology by Satpute et al., in our laboratory, demonstrated its effectiveness for guiding blindfolded participants to move their hand to reach an LED target located in front of their body [5]. Based on the working prototype by Satpute et al., our present research focuses on incorporating the experience of using hand-held tools into the basic FingerSight framework. Accurate localization and feedback are needed