2021 Ingenium: Journal of Undergraduate Research

Page 35

Ingenium 2021

Immunomodulators and macrophages in endometriosis pathogenesis and progression Hilda Jafaraha, Isabelle Chickanoskyb, Alexis Nolfia,c, Mangesh Kulkarnia,c, Clint Skillena,c, Bryan Browna,c a c

Department of Bioengineering, bCarnegie Mellon University, McGowan Institute of Regenerative Medicine

Hilda Jafarah

Hilda Jafarah is a senior bioengineering student who was born and raised in Jeddah, Saudi Arabia. She’s motivated to combine her passion for immunomodulation, tissue engineering, and drug delivery to advance medicine especially in women’s health. After graduation, she aspires to pursue an Md/PhD.

Dr. Bryan Brown is an Associate Professor in the Department of Bioengineering with secondary appointments in the Department of Obstetrics, Gynecology, and Reproductive Sciences and the Clinical and Translational Science Institute at the University of Pittsburgh. He is also Bryan Brown, Ph.D. a core faculty member of the McGowan Institute for Regenerative Medicine where he serves as the Director of Educational Outreach. Dr. Brown is also an Adjunct Assistant Professor of Clinical Sciences at the Cornell University College of Veterinary Medicine and Chief Technology Officer of Renerva, LLC, a Pittsburgh-based start-up company.

Significance Statement

Endometriosis, affecting 200 million women worldwide, causes chronic pelvic pain, infertility, and increases the risk of cancer. This research found that endometriosis development is caused by dysregulated macrophage involvement and subsequent cytokine cascade. This knowledge opens doors to understanding disease identification, potential disease biomarkers, and immunotherapies for diagnosis and treatment.

Category: Review Paper

Keywords: Endometriosis, Cytokines, Macrophages, Pathophysiology, Immune response

Abstract

A comprehensive literature review was conducted focusing on recent findings on the topic of the pathogenesis of endometriosis which is characterized by the ectopic growth of endometrial cells within the peritoneal cavity. Women with endometriosis display a dysfunctional innate and adaptive immune response where immune cells including natural killer cells (NK cells), dendritic cells (DC cells), cytotoxic T cells (T cells), and, specifically, macrophages behave differently. An overpowering imbalance of immunosuppressive factors play a role in the immunoescape of endometrial cells, and the upregulation in angiogenic and neurogenic factors promote the formation and growth of ectopic lesions. With the lack of efficient models, the pathogenesis of endometriosis remains to be unclear; however, current research emphasizes the role of a dysfunctional immune response to refluxed endometrial cells in women with endometriosis including the differential response of immune cells and the expression of various hormones, immunomodulatory cytokines, growth factors, prostaglandins, and angiogenic and neurogenic factors.

1. Introduction

Endometriosis (EMS) is a gynecological disease characterized by the endometrial lining binding outside of the uterine cavity, forming “lesions”. Typically lesions form on the lining of the pelvic cavity (peritoneum) or the organs of the cavity (e.g., ovaries). It is associated with chronic pelvic pain, infertility, and fatigue. EMS affects about 1015% of women of reproductive age, up to 50% of infertile women, and is prevalent in 71–97% of women with chronic pelvic pain [1]; meanwhile, diagnosis is usually delayed by an average of 10 years from the onset of symptoms. Sampson’s theory of retrograde menstruation, defined as the pathogenic reflux of endometrial cells during menses through the fallopian tubes, is commonly accepted to explain the mechanism through which endometrial tissue travels into the peritoneal cavity; however, it fails to explain the discrepancy between the 76-90% of women who experience retrograde menstruation and the 10-15% of women affected by EMS [1]. This literature review allows for a comprehensive understanding of immune malfunction in macrophage and cytokine recruitment in EMS. The macrophage is a unique subset of monocytes with vital roles in both innate and adaptive immunity as it can differentiate into a wide variety of phenotypes ranging from the two extremes: M1 and M2. Pro-inflammatory, “M1-like,” macrophages perpetuate inflammation, secrete pro-inflammatory signaling molecules, and destroy tissues while anti-inflammatory, “M2-like,” macrophages aid in tissue healing and restorative processes. Some studies propose that M1-like macrophages initiate EMS, while others suggest that a localized tissue-level M2-like macrophage population enhances the growth and development of ectopic lesions [2,3]. The hormonal and immune involvement of M1-like and M2-like macrophages during the pathogenesis of EMS recruit various immunomodulators to the peritoneal cavity and result in a cytokine 35


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Index

2min
pages 114-115

u Neural Network-based approximation of model predictive control applied to a flexible shaft servomechanism

13min
pages 107-110

Department of Bioengineering, McGowan Institute for Regenerative Medicine, Renerva, LLC

15min
pages 102-106

u Finite element analysis of stents under radial compression boundary conditions with different material properties

8min
pages 111-113

Analysis of stride segmentation methods to identify heel strike

14min
pages 98-101

Joseph Sukinik, Rosh Bharthi, Sarah Hemler, Kurt Beschorner

13min
pages 94-97

Human Movement and Balance Laboratory, Department of Bioengineering; Falls, Balance, and Injury Research Centre, Neuroscience Research Australia

10min
pages 90-93

u Topological descriptor selection for a quantitative structure-activity relationship (QSAR) model to assess PAH mutagenicity

12min
pages 81-84

Department of Bioengineering, Department of Electrical Engineering, Department of Mechanical Engineering, Innovation, Product Design, and Entrepreneurship Program

12min
pages 85-89

Department of Chemical Engineering, Heart, Lung, Blood, and Vascular Medicine Institute Division of Pulmonary, Allergy and Critical Care Medicine

14min
pages 76-80

u Demonstrating the antibiofouling property of the Clanger cicada wing with ANSYS Fluent simulations

13min
pages 72-75

u Levator Ani muscle dimension changes with gestational and maternal age

11min
pages 64-67

u Bioinformatic analysis of fibroblast-mediated therapy resistance in HER2+ breast cancer

11min
pages 60-63

Department of Bioengineering, Department of Psychiatry, Department of Neurology, Physician Scientist Training Program, University of Pittsburgh School of Medicine

15min
pages 55-59

u Fluid flow simulation of microphysiological knee joint-on-a-chip

14min
pages 49-54

Department of Bioengineering, Division of Vascular Surgery, University of Pittsburgh Medical Center, Department of Surgery, Department of Cardiothoracic Surgery, and Department of Chemical and Petroleum Engineering, McGowan Institute for Regenerative Medicine, and Center for Vascular Remodeling and Regeneration

16min
pages 44-48

Testing the compressive stiffness of endovascular devices

11min
pages 40-43

Department of Bioengineering, Carnegie Mellon University, McGowan Institute of Regenerative Medicine

15min
pages 35-39

Physical Metallurgy & Materials Design Laboratory, Department of Mechanical Engineering & Material Science

13min
pages 25-29

Hardware acceleration of k-means clustering for satellite image compression

15min
pages 20-24

Visualization and Image Analysis (VIA) Laboratory, Department of Bioengineering

16min
pages 30-34

Spike decontamination in local field potential signals from the primate superior colliculus

10min
pages 16-19

u Simulating the effect of different structures and materials on OLED extraction efficiency

8min
pages 13-15

u Representations of population activity during sensorimotor transformation for visually guided eye movements

14min
pages 7-12

Message from the Coeditors in Chief

2min
page 5

A Message from the Associate Dean for Research

3min
page 4
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.