2021 Ingenium: Journal of Undergraduate Research

Page 40

Testing the compressive stiffness of endovascular devices Lucy Jonesa, Dr. Jonathan Vande Geestb a

Soft Tissue Biomechanics Laboratory, bDepartment of Bioengineering

Lucy Jones

Lucy Jones is a senior bioengineering student planning on graduating in the spring. Her interest in biomechanics motivated her to research with Dr. Jonathan Vande Geest at the Soft Tissue Biomechanics Laboratory for nearly two years. She has plans to work for Epic Systems following her undergraduate career.

Dr. Jonathan Vande Geest is a Professor in the Department of Bioengineering, Department of Mechanical Engineering and Material Science, the Department of Ophthalmology, the McGowan Institute for Regenerative Medicine, the Louis J. Fox Center for Vision Restoration, and the Vascular Medicine Institute at the Jonathan Vande University of Pittsburgh. He received his Geest, Ph.D. BS in Biomedical Engineering from the University of Iowa in 2000 and his PhD in Bioengineering from the University of Pittsburgh in 2005. Dr. Vande Geest began his career at the University of Arizona in the Department of Aerospace and Mechanical Engineering and joined the U of A’s Department of Biomedical Engineering in 2009. Dr. Vande Geest returned to the University of Pittsburgh in January of 2016.

Significance Statement

Peripheral artery disease (PAD) is a condition that causes the stenosis of arteries in the limbs. In this work, we used a fabricated 3D printed compression apparatus to assess the compressive resistance of several commercially available stents. Eventually, we will test the compressive resistance of our prototype endovascular device.

Category: Device Design

Keywords: endovascular device, compressive strength, peripheral artery disease, stent

40 Undergraduate Research at the Swanson School of Engineering

Abstract

Peripheral Artery Disease (PAD) is a condition characterized by the stenosis of arteries in the limbs. It can lead to negative consequences ranging from numbness, to amputation, or even death. Treatment methods for PAD include surgical intervention, or angioplasty, and stent implantation. However, these treatment methods are known to fail at high rates and could cause infection, vascular injury, or the restenosis of the artery. As a result, our team has created a new endovascular device that can exert force on the artery walls in order to keep it open while also maintaining the flexibility necessary to contend with complex mechanical regions such as the knee. In preparation for the assessment of our novel device, we have fabricated a simple 3D printed apparatus to evaluate the compressive resistance of our device and commercially available stents. In this work, we have assessed the compressive resistance of several commercially available stent devices. Our findings show that stents can generally withstand compressive loads up to 400g before they experience severe buckling. In the future, we intend to evaluate the compressive resistance of our endovascular device and compare it to that of stents.

1. Introduction

Peripheral Artery Disease (PAD) is a disease affecting approximately 202 million people worldwide [1]. This condition causes the stenosis of arteries and reduces blood flow to distal tissues. If left untreated, PAD will lead to stroke, amputation, or death. There are several available methods of treatment for this condition which include angioplasty, medication, and endovascular stent or stent-graft implantation. Stent grafts are endovascular devices made of a metal mesh and covered in fabric that following deployment expand the artery to keep it patent. People who experience PAD in their femoropopliteal artery need a solution that will be able to endure the complex mechanical challenges associated with that region of the leg (located behind the knee). Stent graft implementation has become a common treatment for PAD in extremities that experience loading from joint movement. Yet, stent graft failure is incredibly common, especially in the femoropopliteal artery, with an approximate 50% loss of patency two years following implantation [2]. Given the adverse effects of PAD, stent failure can be detrimental to the patients’ health and potentially fatal. As a result of the frequent failure of current stents, there has been an effort to make stents more adaptable to their mechanical environment. For instance, there has been success with the Misago, Supera, and Absolute stents, but the flaw of current stents still seems to be the rigidity of the design that is required to create a supportive scaffold inside stenosed arteries. Since stents are still not wholly effective in the long-term treatment of PAD in complex mechanical regions, our goal is to design a new device that will create a more flexible solution and allow for blood flow through the artery with a reduced risk of restenosis. For this phase in the development of our device, we


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Index

2min
pages 114-115

u Neural Network-based approximation of model predictive control applied to a flexible shaft servomechanism

13min
pages 107-110

Department of Bioengineering, McGowan Institute for Regenerative Medicine, Renerva, LLC

15min
pages 102-106

u Finite element analysis of stents under radial compression boundary conditions with different material properties

8min
pages 111-113

Analysis of stride segmentation methods to identify heel strike

14min
pages 98-101

Joseph Sukinik, Rosh Bharthi, Sarah Hemler, Kurt Beschorner

13min
pages 94-97

Human Movement and Balance Laboratory, Department of Bioengineering; Falls, Balance, and Injury Research Centre, Neuroscience Research Australia

10min
pages 90-93

u Topological descriptor selection for a quantitative structure-activity relationship (QSAR) model to assess PAH mutagenicity

12min
pages 81-84

Department of Bioengineering, Department of Electrical Engineering, Department of Mechanical Engineering, Innovation, Product Design, and Entrepreneurship Program

12min
pages 85-89

Department of Chemical Engineering, Heart, Lung, Blood, and Vascular Medicine Institute Division of Pulmonary, Allergy and Critical Care Medicine

14min
pages 76-80

u Demonstrating the antibiofouling property of the Clanger cicada wing with ANSYS Fluent simulations

13min
pages 72-75

u Levator Ani muscle dimension changes with gestational and maternal age

11min
pages 64-67

u Bioinformatic analysis of fibroblast-mediated therapy resistance in HER2+ breast cancer

11min
pages 60-63

Department of Bioengineering, Department of Psychiatry, Department of Neurology, Physician Scientist Training Program, University of Pittsburgh School of Medicine

15min
pages 55-59

u Fluid flow simulation of microphysiological knee joint-on-a-chip

14min
pages 49-54

Department of Bioengineering, Division of Vascular Surgery, University of Pittsburgh Medical Center, Department of Surgery, Department of Cardiothoracic Surgery, and Department of Chemical and Petroleum Engineering, McGowan Institute for Regenerative Medicine, and Center for Vascular Remodeling and Regeneration

16min
pages 44-48

Testing the compressive stiffness of endovascular devices

11min
pages 40-43

Department of Bioengineering, Carnegie Mellon University, McGowan Institute of Regenerative Medicine

15min
pages 35-39

Physical Metallurgy & Materials Design Laboratory, Department of Mechanical Engineering & Material Science

13min
pages 25-29

Hardware acceleration of k-means clustering for satellite image compression

15min
pages 20-24

Visualization and Image Analysis (VIA) Laboratory, Department of Bioengineering

16min
pages 30-34

Spike decontamination in local field potential signals from the primate superior colliculus

10min
pages 16-19

u Simulating the effect of different structures and materials on OLED extraction efficiency

8min
pages 13-15

u Representations of population activity during sensorimotor transformation for visually guided eye movements

14min
pages 7-12

Message from the Coeditors in Chief

2min
page 5

A Message from the Associate Dean for Research

3min
page 4
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.