2021 Ingenium: Journal of Undergraduate Research

Page 60

Bioinformatic analysis of fibroblast-mediated therapy resistance in HER2+ breast cancer Jacob C. McDonalda and Ioannis K. Zervantonakisa, b Tumor Microenvironment Engineering Laboratory, Department of Bioengineering, bUPMC Hillman Cancer Center

a

Jacob McDonald is a junior bioengineering student at the University of Pittsburgh with a focus in cellular engineering. After graduating, he plans to further his education and bioengineering research by attending graduate school. Jacob C. McDonald

Ioannis Zervantonakis is an Assistant Professor at the Department of Bioengineering, University of Pittsburgh and at the Hillman Cancer Center UPMC. He serves as an Early-Career Associate Scientific Advisor to Science Translational Medicine, has received the 2020 Hillman Early-Career Fellow Ioannis K. for Innovative Cancer Research Award Zervantonakis and his laboratory is funded by an Elsa Pardee Foundation Award.

Significance Statement

Interactions between tumor cells and stromal fibroblasts in the tumor microenvironment have been shown to mediate drug resistance in some HER2 overexpressing breast cancers. This study identifies signaling pathways within tumor cells that are critical to fibroblast-mediated drug resistance and proposes targeting specific proteins to restore treatment sensitivity.

Category: Computational Research

Keywords: breast cancer, tumor microenvironment, fibroblasts, drug resistance

60 Undergraduate Research at the Swanson School of Engineering

Abstract

Multiple targeted therapies have been developed for the treatment of HER2 overexpressing (HER2+) breast cancers, such as the dual HER2/EGFR kinase inhibitor lapatinib, but many patients eventually develop resistance to these treatments. One proposed cause of HER2 therapy resistance is the interaction between tumor cells and stromal fibroblasts in the tumor microenvironment, which has been reported to activate signaling pathways in HER2+ tumor cells that lead to a decrease in drug sensitivity. Here, we identify and compare both protein-expression and gene-expression signatures of breast cancer cells that exhibit fibroblast-mediated lapatinib resistance. We then integrate proteomic data with cell treatment response data to identify optimal protein targets for combination therapy that may restore lapatinib sensitivity in fibroblast-protected cancer cells. Our signatures for fibroblast protection suggest that fibroblasts reduce lapatinib sensitivity in HER2+ breast cancer cells through reactivation of the PI3K/Akt and mTOR signaling pathways, which results in increased cell cycle signaling and changes in lipid metabolism. Specifically, we found that lapatinib resulted in greater inhibition of proteins in the Akt/mTOR, cell cycle, and lipid synthesis pathways in cell lines that exhibited high sensitivity to lapatinib (i.e. low cell viability). Together, our findings suggest that inhibition of these pathways may be sufficient to restore lapatinib sensitivity in fibroblast-protected breast cancer cells.

1. Introduction

HER2 overexpressing (HER2+) breast cancer accounts for ~20% of all breast cancer cases [1]. The HER2 receptor is a receptor tyrosine kinase in the epidermal growth factor receptor family (ErbB), and heterodimerization of HER2 with other members of the ErbB family leads to signal transduction through the PI3K/Akt and MAPK survival pathways [2]. As a result, overexpression of HER2 can lead to increased cancer cell survival, proliferation, and invasion. Multiple targeted therapies have been developed to treat HER2+ breast cancer, such as the dual HER2/ EGFR kinase inhibitor lapatinib. Lapatinib acts by binding to the kinase domain of the HER2 receptor, preventing its autophosphorylation and therefore its ability to transduce pro-survival signaling [3]. However, even though lapatinib treatment may initially be successful in treating HER2+ breast cancers, many patients will eventually develop resistance to these treatments. Several mechanisms of resistance to lapatinib treatment have been proposed, such as the activation of compensatory signaling pathways through other kinases, mutation of the HER2 kinase domain, or gene amplification [3]. Another proposed cause of HER2 therapy resistance is the interaction between tumor cells and stromal fibroblasts in the tumor microenvironment, which can occur through direct cell-cell contact or through the secretion of soluble factors. These tumor-fibroblast interactions have been reported to activate signaling pathways in some HER2+ tumor cell lines, such as the mTOR


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Index

2min
pages 114-115

u Neural Network-based approximation of model predictive control applied to a flexible shaft servomechanism

13min
pages 107-110

Department of Bioengineering, McGowan Institute for Regenerative Medicine, Renerva, LLC

15min
pages 102-106

u Finite element analysis of stents under radial compression boundary conditions with different material properties

8min
pages 111-113

Analysis of stride segmentation methods to identify heel strike

14min
pages 98-101

Joseph Sukinik, Rosh Bharthi, Sarah Hemler, Kurt Beschorner

13min
pages 94-97

Human Movement and Balance Laboratory, Department of Bioengineering; Falls, Balance, and Injury Research Centre, Neuroscience Research Australia

10min
pages 90-93

u Topological descriptor selection for a quantitative structure-activity relationship (QSAR) model to assess PAH mutagenicity

12min
pages 81-84

Department of Bioengineering, Department of Electrical Engineering, Department of Mechanical Engineering, Innovation, Product Design, and Entrepreneurship Program

12min
pages 85-89

Department of Chemical Engineering, Heart, Lung, Blood, and Vascular Medicine Institute Division of Pulmonary, Allergy and Critical Care Medicine

14min
pages 76-80

u Demonstrating the antibiofouling property of the Clanger cicada wing with ANSYS Fluent simulations

13min
pages 72-75

u Levator Ani muscle dimension changes with gestational and maternal age

11min
pages 64-67

u Bioinformatic analysis of fibroblast-mediated therapy resistance in HER2+ breast cancer

11min
pages 60-63

Department of Bioengineering, Department of Psychiatry, Department of Neurology, Physician Scientist Training Program, University of Pittsburgh School of Medicine

15min
pages 55-59

u Fluid flow simulation of microphysiological knee joint-on-a-chip

14min
pages 49-54

Department of Bioengineering, Division of Vascular Surgery, University of Pittsburgh Medical Center, Department of Surgery, Department of Cardiothoracic Surgery, and Department of Chemical and Petroleum Engineering, McGowan Institute for Regenerative Medicine, and Center for Vascular Remodeling and Regeneration

16min
pages 44-48

Testing the compressive stiffness of endovascular devices

11min
pages 40-43

Department of Bioengineering, Carnegie Mellon University, McGowan Institute of Regenerative Medicine

15min
pages 35-39

Physical Metallurgy & Materials Design Laboratory, Department of Mechanical Engineering & Material Science

13min
pages 25-29

Hardware acceleration of k-means clustering for satellite image compression

15min
pages 20-24

Visualization and Image Analysis (VIA) Laboratory, Department of Bioengineering

16min
pages 30-34

Spike decontamination in local field potential signals from the primate superior colliculus

10min
pages 16-19

u Simulating the effect of different structures and materials on OLED extraction efficiency

8min
pages 13-15

u Representations of population activity during sensorimotor transformation for visually guided eye movements

14min
pages 7-12

Message from the Coeditors in Chief

2min
page 5

A Message from the Associate Dean for Research

3min
page 4
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.