Levator Ani muscle dimension changes with gestational and maternal age Oreoluwa Odeniyi, Megan Routzong, B.S., Steven Abramowitch, Ph.D. Department of Bioengineering Oreoluwa Odeniyi was raised in Poughkeepsie, NY. Her passion for women’s health motivates her to become an OB/GYN and embark on a path of advocacy/counseling for sexual assault survivors. Oreoluwa Odeniyi
Dr. Abramowitch received his B.S. (1998) in Applied Mathematics and Ph.D. (2004) in Bioengineering from the University of Pittsburgh. Currently, he is an Associate Professor in the Department of Bioengineering and serves as the Director of the Translational Biomechanics Laboratory. Dr. Abramowitch’s research focuses on Steven Abramowitch, understanding the impact of pregnancy, Ph.D. delivery, and other life events (aging, menopause, etc.) on the structural integrity of the pelvic floor in women.
Significance Statement
The field of women’s health is underserved and research concerning pregnant women is especially important as issues with the mother may also affect the fetus. Approximately 3.7 million births occur per year in the US. Women who have had one or more vaginal births are at an increased risk of developing pelvic floor disorders [1]. The increase in M line, which represents the descent of the levator hiatus, is used to signify pelvic floor laxity and could be indicative of injury or some type of mechanical deficiency that would increase the risk of those women developing a pelvic floor disorder.
Abstract
The pelvic floor is a complex system of interconnected muscles that support the pelvic organs, such as the vagina, urethra, and rectum. The physical stress of pregnancy and childbirth can result in the weakening or permanent damage of the muscles of the pelvic floor, known as the levator ani muscles [2]. Large changes in the dimensions of the levator ani could be indicative of injury or remodeling and understanding these mechanisms could aid in the prevention or treatment of levator ani injury. Our goal was to quantify changes in the levator ani during pregnancy and with age by comparing MRI scans of women (age 20-49) at various timepoints during pregnancy. The use of four reference lines, M line, H line, Pubococcygeal line and Levator plate angle were measured from the midsagittal slice using Slicer (v. 4.11, slicer.org). These measurements were correlated with maternal and gestational age in order to define any significant relationships. There was a general increase in the M line, one of the levator ani muscle parameters, with respect to gestational age, leading to the conclusion of greater muscle laxity throughout gestation.
1. Introduction 1.1. Anatomical Background
Disruption of pelvic floor function serves as a factor that can affect a woman’s quality of life. The pelvic floor is a complex system of interconnected muscles and connective tissues that support the pelvic organs, such as the vagina, urethra, and rectum. The pelvis is divided into anterior, middle, and posterior compartments. The bladder and urethra compose the anterior compartment; the cervix and vagina compose the middle compartment; and the rectum, anus, and anal sphincters compose the posterior compartment. The levator ani muscles, the primary muscular support for the pelvic organs, attach to the sides of the lesser pelvis and unite posteriorly behind the rectum at the levator plate [2]. Three muscles are responsible for the composition of the levator ani; the iliococcygeus, pubococcygeus, and puborectalis, as shown in Figure 1.
Category: Computational Research
Keywords: Levator Ani, M line, pelvic floor, gestational age Abbreviations: Gestational age – GA, Maternal Age – MA, Pubococcygeal line – PCL, Levator Plate Angle – LPA, IRB – institutional review board
Figure 1. Pelvic Floor muscles and other pelvic anatomy from an inferior view
64 Undergraduate Research at the Swanson School of Engineering