2021 Ingenium: Journal of Undergraduate Research

Page 7

Representations of population activity during sensorimotor transformation for visually guided eye movements* Eve C. Ayara,c,d, Michelle R. Heusserb,d, Neeraj J. Gandhia,b,c,d Department of Neuroscience, bDepartment of Bioengineering, c Center for Neuroscience (CNUP), d Center for Neural Basis of Cognition (CNBC)

a

Eve Ayar is a junior Neuroscience student. She is interested in investigating patterns of population activity during sensorimotor integration. After graduation, she plans to pursue a Ph.D. in Neural Computation. Eve Ayar

Michelle Heusser is a Ph.D. candidate in Bioengineering at the University of Pittsburgh. Her research in the Gandhi lab focuses on the time course of neural population activity in the superior colliculus and its relationship to motor behavior. Michelle R. Heusser

Neeraj (Raj) Gandhi, Ph.D.

Neeraj (Raj) Gandhi, Ph.D. is Professor and Graduate Program Director in the Department of Bioengineering. He also developed the Professional Masters program focused on neural engineering. His research focuses on understanding neural communication during sensation, action, and cognition.

Significance Statement

Sensorimotor transformation is a process that humans perform over 100,000 times a day—for example, when we look at or reach for objects of interest. Many areas of the brain register a sensory stimulus and convert the stimulus-related information into an appropriate motor output. Deficits in sensory and/or motor processes are implicated in a number of neurological disorders such as Parkinson’s Disease [1]. We are interested in how the context of visual behavioral tasks impacts patterns of population activity during sensorimotor transformation.

Category: Computational Research

Keywords: saccade, dimensionality reduction, eye movement, sensorimotor Abbreviations: superior colliculus (SC), peristimulus time histogram (PSTH) *

Reviewers’ Choice

Ingenium 2021

Abstract

For visually guided eye movements known as saccades, neurons in the superior colliculus in the midbrain emit a volley of action potentials to register a visual (sensory) stimulus, and they also discharge another high frequency burst of spikes to move the line of sight. We investigated the representations of sensory- and motor-related population activity during two paradigms, the delayed saccade and gap tasks. The two tasks differ in instructing the time to initiate the eye movement, permitting different temporal evolutions of the sensorimotor transformation. Dimensionality reduction methods were used to visualize the pattern of activity of recorded neurons and determine if the population responses in both tasks exhibit similar visual and motor patterns despite differences in event timing and cognitive context. Preliminary analyses suggest that the visual patterns explored during the delay and gap tasks largely overlap, while patterns of motor activity present differences, leading us to believe that downstream structures may differentiate signal processing between behavioral tasks.

1. Introduction

Consider a monkey in a tree searching for a banana. If he sees something yellow appear in his visual field, he will look at it. Simply put, this is the process of sensorimotor transformation: the brain registers a sensory input (e.g., banana) and then converts it to a motor output (e.g., the act of looking at or reaching for the banana). The superior colliculus (SC) is a structure in the brain that is integral in this process because it contains both visual and motor related signals that rapidly redirect the visual axis. We want to understand how sensorimotor transformation occurs in different tasks. If the context of a behavioral task matters, we expect to see differences in SC neural activity patterns because the signals involved in sensorimotor transformation will be processed differently. To characterize different representations of population activity, neural activity patterns were analyzed across two conditions: the delayed saccade task and gap task (Figure 1). The delayed saccade task requires the animal to volitionally withhold movement generation until a later point in time. This condition separates the visual and motor bursts in time. The gap saccade task, in contrast, requires the animal to react immediately. Thus, the movement can happen as soon as visual signals are processed. In this condition, the visual and motor neural bursts can temporally overlap and may even merge into a single burst. For both tasks, we care about activity at two key time points in a trial, 1) estimated visual burst time and 2) saccade onset, indicated by the lines in Figure 1. These key points occur in both tasks but have different timelines because one task has an imposed delay, and the other does not. In this project, we focus on the similarities and differences between visual and motor bursts under the two conditions in a low-dimensional state space, with the goal of determining whether there is a different pattern of population activity relayed to downstream areas. 7


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Index

2min
pages 114-115

u Neural Network-based approximation of model predictive control applied to a flexible shaft servomechanism

13min
pages 107-110

Department of Bioengineering, McGowan Institute for Regenerative Medicine, Renerva, LLC

15min
pages 102-106

u Finite element analysis of stents under radial compression boundary conditions with different material properties

8min
pages 111-113

Analysis of stride segmentation methods to identify heel strike

14min
pages 98-101

Joseph Sukinik, Rosh Bharthi, Sarah Hemler, Kurt Beschorner

13min
pages 94-97

Human Movement and Balance Laboratory, Department of Bioengineering; Falls, Balance, and Injury Research Centre, Neuroscience Research Australia

10min
pages 90-93

u Topological descriptor selection for a quantitative structure-activity relationship (QSAR) model to assess PAH mutagenicity

12min
pages 81-84

Department of Bioengineering, Department of Electrical Engineering, Department of Mechanical Engineering, Innovation, Product Design, and Entrepreneurship Program

12min
pages 85-89

Department of Chemical Engineering, Heart, Lung, Blood, and Vascular Medicine Institute Division of Pulmonary, Allergy and Critical Care Medicine

14min
pages 76-80

u Demonstrating the antibiofouling property of the Clanger cicada wing with ANSYS Fluent simulations

13min
pages 72-75

u Levator Ani muscle dimension changes with gestational and maternal age

11min
pages 64-67

u Bioinformatic analysis of fibroblast-mediated therapy resistance in HER2+ breast cancer

11min
pages 60-63

Department of Bioengineering, Department of Psychiatry, Department of Neurology, Physician Scientist Training Program, University of Pittsburgh School of Medicine

15min
pages 55-59

u Fluid flow simulation of microphysiological knee joint-on-a-chip

14min
pages 49-54

Department of Bioengineering, Division of Vascular Surgery, University of Pittsburgh Medical Center, Department of Surgery, Department of Cardiothoracic Surgery, and Department of Chemical and Petroleum Engineering, McGowan Institute for Regenerative Medicine, and Center for Vascular Remodeling and Regeneration

16min
pages 44-48

Testing the compressive stiffness of endovascular devices

11min
pages 40-43

Department of Bioengineering, Carnegie Mellon University, McGowan Institute of Regenerative Medicine

15min
pages 35-39

Physical Metallurgy & Materials Design Laboratory, Department of Mechanical Engineering & Material Science

13min
pages 25-29

Hardware acceleration of k-means clustering for satellite image compression

15min
pages 20-24

Visualization and Image Analysis (VIA) Laboratory, Department of Bioengineering

16min
pages 30-34

Spike decontamination in local field potential signals from the primate superior colliculus

10min
pages 16-19

u Simulating the effect of different structures and materials on OLED extraction efficiency

8min
pages 13-15

u Representations of population activity during sensorimotor transformation for visually guided eye movements

14min
pages 7-12

Message from the Coeditors in Chief

2min
page 5

A Message from the Associate Dean for Research

3min
page 4
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.