2021 Ingenium: Journal of Undergraduate Research

Page 72

Demonstrating the antibiofouling property of the Clanger cicada wing with ANSYS Fluent simulations Brady C. Pilsbury, Paul W. Leu The Laboratory for Advanced Materials at Pittsburgh, Department of Industrial Engineering Brady Pilsbury is originally from Warren, NJ. His interests in science, writing, and law drive him to become a patent agent.

Brady C. Pilsbury

Dr. Leu is an Associate Professor in the Department of Industrial Engineering and the Department of Mechanical Engineering and Materials Science. He received his BS in Mechanical Engineering at Rice University in 2002, his MS from Stanford University in 2004, and his PhD from Stanford Paul W. Leu, Ph.D. University in 2008. Dr. Leu’s lab research focuses on designing and understanding advanced materials by computational modeling and experimental research.

Significance Statement

Microdroplets released upon coughing, sneezing, or speaking are one source of spread for human viruses. Simulation results illustrate how the introduction of nanostructures inspired by the Clanger cicada wing to a surface can limit microdroplet adhesion and help reduce the spread of pathogens due to contact with surfaces.

Category: Computational Research

Keywords: Nanostructures, Antibiofouling, ANSYS Fluent

72 Undergraduate Research at the Swanson School of Engineering

Abstract

The Clanger cicada wing is known to have an antibiofouling effect related to the particular pattern of nanostructures on the wing surface. Understanding the mechanisms that create this effect allows for the development of effective antibiofouling nanostructured surfaces, which can help reduce the spread of pathogens. Water repellency is well established as one such mechanism, which this study seeks to validate with the use of water droplet simulations conducted in ANSYS Fluent. The 2D simulations show how the addition of Clanger cicada wing inspired nanostructures to a flat surface impacts surface hydrophobicity and water droplet contact angle hysteresis. A pre-existing empirical dynamic contact angel model was implemented to capture differences in contact angle hysteresis between the flat and nanostructured surface. The application of such a model to a nanostructured surface has not been previously attempted within ANSYS Fluent. The water droplet achieved a greater contact angle and lower contact angle hysteresis on the nanostructured surface when compared to the flat control, indicating that the drop entered the Cassie-Baxter state and would roll off the surface at low incline angles. These results support the repellence of microdroplets containing pathogens as one mechanism through which the Clanger cicada wing achieves a strong antibiofouling effect.

1. Introduction

The wings of insects like the Clanger cicada (Psaltoda claripennis) have been observed to have highly hydrophobic and antibiofouling properties due to the presence of nanopatterns on the surface of their wings [1]. The behavior of microdroplets on such nanopatterned surfaces has implications for public health, since viruses and other pathogens can be transferred through microdroplets. Surfaces designed to strongly repel and roll off microdroplets can help reduce the spread of pathogens. The water repellency of a surface is often characterized by a water droplet contact angle measurement. This angle refers to the angle formed by the gas-liquid and solid-liquid interfaces at the points along the bottom edge of the droplet where all three phases meet. Convention dictates that a surface is hydrophilic when its contact angle is less than 90°, hydrophobic when the contact angle is greater than 90°, and superhydrophobic when the contact angle exceeds 150° [2]. Nanoscale surface roughness can allow a droplet to enter the Cassie-Baxter state, which is characterized by the droplet resting atop protrusions from the surface and bridging over lower elevation regions of the surface instead of penetrating them [2]. Water droplets in the Cassie-Baxter state tend to have a high contact angle, low contact angle hysteresis, and an associated low run off angle [2]. Contact angle hysteresis refers to the


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Index

2min
pages 114-115

u Neural Network-based approximation of model predictive control applied to a flexible shaft servomechanism

13min
pages 107-110

Department of Bioengineering, McGowan Institute for Regenerative Medicine, Renerva, LLC

15min
pages 102-106

u Finite element analysis of stents under radial compression boundary conditions with different material properties

8min
pages 111-113

Analysis of stride segmentation methods to identify heel strike

14min
pages 98-101

Joseph Sukinik, Rosh Bharthi, Sarah Hemler, Kurt Beschorner

13min
pages 94-97

Human Movement and Balance Laboratory, Department of Bioengineering; Falls, Balance, and Injury Research Centre, Neuroscience Research Australia

10min
pages 90-93

u Topological descriptor selection for a quantitative structure-activity relationship (QSAR) model to assess PAH mutagenicity

12min
pages 81-84

Department of Bioengineering, Department of Electrical Engineering, Department of Mechanical Engineering, Innovation, Product Design, and Entrepreneurship Program

12min
pages 85-89

Department of Chemical Engineering, Heart, Lung, Blood, and Vascular Medicine Institute Division of Pulmonary, Allergy and Critical Care Medicine

14min
pages 76-80

u Demonstrating the antibiofouling property of the Clanger cicada wing with ANSYS Fluent simulations

13min
pages 72-75

u Levator Ani muscle dimension changes with gestational and maternal age

11min
pages 64-67

u Bioinformatic analysis of fibroblast-mediated therapy resistance in HER2+ breast cancer

11min
pages 60-63

Department of Bioengineering, Department of Psychiatry, Department of Neurology, Physician Scientist Training Program, University of Pittsburgh School of Medicine

15min
pages 55-59

u Fluid flow simulation of microphysiological knee joint-on-a-chip

14min
pages 49-54

Department of Bioengineering, Division of Vascular Surgery, University of Pittsburgh Medical Center, Department of Surgery, Department of Cardiothoracic Surgery, and Department of Chemical and Petroleum Engineering, McGowan Institute for Regenerative Medicine, and Center for Vascular Remodeling and Regeneration

16min
pages 44-48

Testing the compressive stiffness of endovascular devices

11min
pages 40-43

Department of Bioengineering, Carnegie Mellon University, McGowan Institute of Regenerative Medicine

15min
pages 35-39

Physical Metallurgy & Materials Design Laboratory, Department of Mechanical Engineering & Material Science

13min
pages 25-29

Hardware acceleration of k-means clustering for satellite image compression

15min
pages 20-24

Visualization and Image Analysis (VIA) Laboratory, Department of Bioengineering

16min
pages 30-34

Spike decontamination in local field potential signals from the primate superior colliculus

10min
pages 16-19

u Simulating the effect of different structures and materials on OLED extraction efficiency

8min
pages 13-15

u Representations of population activity during sensorimotor transformation for visually guided eye movements

14min
pages 7-12

Message from the Coeditors in Chief

2min
page 5

A Message from the Associate Dean for Research

3min
page 4
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.