Identifying potential mammalian heme/CO sensors through a bioinformatic analysis of the Per-Arnt-Sim (PAS) protein domain JonPaul Plesniaka, Matthew Dentb, Jason Roseb,c, Jesus Tejerob,c a
Chemical Engineering, b Heart, Lung, Blood, and Vascular Medicine Institute, c Division of Pulmonary, Allergy and Critical Care Medicine JonPaul Plesniak is a junior chemical engineering major and bioengineering minor at the University of Pittsburgh. He has a passion for innovation and discovery and wants to pursue these interests with a career in product design and development.
JonPaul Plesniak
Matt Dent is a postdoctoral researcher in Dr. Mark Gladwin’s lab in the Vascular Medicine Institute at the University of Pittsburgh. He earned his Ph.D. in chemistry at the University of WisconsinMadison in 2019, where he used biochemical techniques to characterize heme-mediated carbon monoxide Matthew Dent sensing in microbial transcription factors. Matt’s current research interests include characterizing novel CO signaling pathways in humans.
Dr. Rose received his BSE in Biomedical Engineering at the University of Michigan in 2006, his MD at Wayne State University in 2010, and MBA from Carnegie Mellon University in 2017. He completed his internal medicine residency at Duke University Medical Center and pulmonary and critical care Jason Rose, M.D. medicine fellowship at the University of Pittsburgh. He joined the University of Pittsburgh faculty in 2016 and is currently an Assistant Professor of Medicine. His research interests focus on discovering and developing new human therapeutics, particularly in medical countermeasures and inhalational respiratory diseases. Dr. Tejero received his degree in Organic Chemistry at the University of Zaragoza, Spain in 1998 and earned his PhD in Biochemistry at the University of Zaragoza in 2004. He completed postdoctoral work at the Cleveland Clinic and the University of Pittsburgh, and moved to a faculty position at the University of Jesus Tejero, Ph.D. Pittsburgh in 2011. Dr. Tejero is currently an Associate Professor in the Department of Pulmonary, Allergy and Critical Care Medicine.
Significance Statement
The role of carbon monoxide (CO) in human physiology is not well understood. While high concentrations CO are highly toxic, recent evidence points toward the importance of endogenously produced CO in cellular signaling. Few molecular targets for CO have been characterized in eukaryotes. This study has identified potential mammalian heme/CO sensors for further analysis and characterization.
Category: Computational Research
Keywords: carbon monoxide, PAS domain, heme, phylogenetic analysis
76 Undergraduate Research at the Swanson School of Engineering