2021 Ingenium: Journal of Undergraduate Research

Page 81

Topological descriptor selection for a quantitative structure-activity relationship (QSAR) model to assess PAH mutagenicity Caitlin Sextona, Trevor Sleight, P.E.a,b, Carla Ng, Ph.D.b, Leanne Gilbertson, Ph.D.a Gilbertson Lab Group, bNg Lab Group, Department of Civil and Environmental Engineering a

Caitlin Sexton

Caitlin Sexton is a junior chemical engineering student originally from Allentown, PA. Her interests include the various aspects of sustainability in application to the chemical industry. She aims to use her research experience in environmental hazards and data analysis as a guide in her post-grad career. Trevor Sleight is a 3rd year Ph.D. student, co-advised by Dr. Ng and Dr. Gilbertson. His research interest include environmental health, data analysis and biodegradation.

Trevor Sleight

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are an abundant byproduct of industrial and natural pyrogenic processes. PAHs tend to persist in soil, providing a rich nutrient source for degrading bacteria. The degradation process may lead to the formation of toxic metabolites, however, there is limited research examining the hazards of transformation products in soil. Currently, the Environmental Protection Agency (EPA) classifies 16 toxic PAHs as priority pollutants without addressing the harmful metabolites. This project aims to select descriptors for a quantitative structure-activity relationship (QSAR) model based upon a data set containing TA98 Ames test known mutagens and non-mutagens. A logistic regression model determined 20 significant descriptors representing the molecular features linked to mutagenicity classification. Of these 20 descriptors, the number of rings larger than 12 members containing oxygen, (nFG12HeteroRing), the average centered Broto-Moreau autocorrelation (AATSC6c), and the z-modified information content index (ZMIC4), had the most significant link to mutagenicity classification based upon assessment of the corresponding logistic regression coefficients. These descriptors highlight the molecular structures that contribute to mutagenicity of PAHs within biodegradation pathways.

1. Introduction

Carla Ng is an assistant professor of Civil & Environmental Engineering. Her group focuses on understanding and predicting the biological impacts of chemicals in the environment.

Carla Ng, Ph.D.

Leanne Gilbertson, Ph.D.

Ingenium 2021

Dr. Gilbertson is an Assistant Professor in the Department of Civil and Environmental Engineering at the University of Pittsburgh. Her research group at the University of Pittsburgh is currently engaged in projects aimed at informing sustainable design of emerging materials and technologies proposed for use in areas at the nexus of the environment and public health.

Significance Statement

This study aims to assess the mutagenicity, and therefore environmental hazard, of PAHs in soil using a computational QSAR model. PAH mutagenicity is difficult to assess due to the variety of metabolites which can result from many possible biodegradation pathways. Descriptors discussed in this study will be the basis of the QSAR model.

Category: Computational Research Keywords: PAH, Mutagenicity, QSAR, Logistic regression

Polycyclic Aromatic Hydrocarbons (PAHs) contain at least two aromatic rings and often result as a byproduct of various natural and industrial processes, including forest fires, extraction and burning of fossil fuels, and plastic manufacturing. PAHs are commonly found in the atmosphere and soil of surrounding ecosystems due to these processes. However, PAHs in soil tend to be more persistent and are a possible source of carbon for degrading bacteria [1]. The Environmental Protection Agency (EPA) currently classifies 16 PAHs as priority pollutants [2]. There is increasing concern over the mutagenic properties of some PAHs in the human body. However, the degrading bacteria transform these parent PAHs into various metabolites via a large multitude of pathways, which may have different toxic properties from the parent PAHs, making it difficult to thoroughly assess the potential hazard in the laboratory setting. Quantitative structure-activity relationships (QSARs) have proven to be a useful tool for characterizing the toxicity of large chemical datasets, including those from PAH biodegradation, because of their predictive power [3]. QSARs can classify the endpoint toxic potential of input data based on a foundation of empirical training data and relevant structural and electronic descriptors. This foundation provides reproducible predictive ability for input data containing chemically similar compounds. The training dataset and chosen descriptors used to build a QSAR are crucial to its applicability [4]. There are currently a variety of powerful QSARs available to the public which can predict narcotic toxicity but lack the specificity to classify mutagenic metabolites of PAHs in soil. 81


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Index

2min
pages 114-115

u Neural Network-based approximation of model predictive control applied to a flexible shaft servomechanism

13min
pages 107-110

Department of Bioengineering, McGowan Institute for Regenerative Medicine, Renerva, LLC

15min
pages 102-106

u Finite element analysis of stents under radial compression boundary conditions with different material properties

8min
pages 111-113

Analysis of stride segmentation methods to identify heel strike

14min
pages 98-101

Joseph Sukinik, Rosh Bharthi, Sarah Hemler, Kurt Beschorner

13min
pages 94-97

Human Movement and Balance Laboratory, Department of Bioengineering; Falls, Balance, and Injury Research Centre, Neuroscience Research Australia

10min
pages 90-93

u Topological descriptor selection for a quantitative structure-activity relationship (QSAR) model to assess PAH mutagenicity

12min
pages 81-84

Department of Bioengineering, Department of Electrical Engineering, Department of Mechanical Engineering, Innovation, Product Design, and Entrepreneurship Program

12min
pages 85-89

Department of Chemical Engineering, Heart, Lung, Blood, and Vascular Medicine Institute Division of Pulmonary, Allergy and Critical Care Medicine

14min
pages 76-80

u Demonstrating the antibiofouling property of the Clanger cicada wing with ANSYS Fluent simulations

13min
pages 72-75

u Levator Ani muscle dimension changes with gestational and maternal age

11min
pages 64-67

u Bioinformatic analysis of fibroblast-mediated therapy resistance in HER2+ breast cancer

11min
pages 60-63

Department of Bioengineering, Department of Psychiatry, Department of Neurology, Physician Scientist Training Program, University of Pittsburgh School of Medicine

15min
pages 55-59

u Fluid flow simulation of microphysiological knee joint-on-a-chip

14min
pages 49-54

Department of Bioengineering, Division of Vascular Surgery, University of Pittsburgh Medical Center, Department of Surgery, Department of Cardiothoracic Surgery, and Department of Chemical and Petroleum Engineering, McGowan Institute for Regenerative Medicine, and Center for Vascular Remodeling and Regeneration

16min
pages 44-48

Testing the compressive stiffness of endovascular devices

11min
pages 40-43

Department of Bioengineering, Carnegie Mellon University, McGowan Institute of Regenerative Medicine

15min
pages 35-39

Physical Metallurgy & Materials Design Laboratory, Department of Mechanical Engineering & Material Science

13min
pages 25-29

Hardware acceleration of k-means clustering for satellite image compression

15min
pages 20-24

Visualization and Image Analysis (VIA) Laboratory, Department of Bioengineering

16min
pages 30-34

Spike decontamination in local field potential signals from the primate superior colliculus

10min
pages 16-19

u Simulating the effect of different structures and materials on OLED extraction efficiency

8min
pages 13-15

u Representations of population activity during sensorimotor transformation for visually guided eye movements

14min
pages 7-12

Message from the Coeditors in Chief

2min
page 5

A Message from the Associate Dean for Research

3min
page 4
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.