2021 Ingenium: Journal of Undergraduate Research

Page 90

User-specific factors associated with ladder handrail use Jami Stuckeya, Michelle Tsizhovkina, Kurt Beschornera, Erika Plinerb, Daina Sturnieksb, Stephen Lordb Human Movement and Balance Laboratory, Department of Bioengineering, bFalls, Balance, and Injury Research Centre, Neuroscience Research Australia a

Jami Stuckey

Jami Stuckey is an undergraduate biomedical engineering student at the University of Pittsburgh. Her research interests include biomechanics and rehabilitation engineering. After her time at the Human Movement and Balance Laboratories, she accepted a co-op program with the Human Engineering Research Laboratories. Kurt Beschorner is an Associate Professor of Bioengineering at the University of Pittsburgh. He utilizes techniques in tribology, biomechanics and ergonomics to generate understanding and interventions for falling accidents.

Kurt Beschorner, Ph.D.

Significance Statement

Understanding user-specific factors of ladder fall risk in older adults is important since ladder falls are a frequent cause of injury and fatality among this population. This study found greater risk-taking, as measured by a survey tool, was associated with less use of a safety handrail. Therefore, promoting less risk-taking behaviors may promote safer use of ladders.

Category: Experimental Research

Keywords: Ladder safety, fall risk, handrail use, user-specific factors, individual factors Abbreviations: Physiological Profile Assessment (PPA), Mini-Mental State Exam (MMSE)

90 Undergraduate Research at the Swanson School of Engineering

Abstract

Unintentional injuries and fatalities caused by ladder falls are especially common among retirement-age adults living independently at home. Past research has focused on environmental factors that increase one’s fall risk, but there is a lack of knowledge on user-specific factors that promote safe ladder use. This study recruited older adult participants to determine the user-specific factors that influence an individual’s ladder handrail use during a domestic ladder task. Two trials of the ladder task were completed, one without a cognitive distraction (single task) and one while naming animals (dual task). Investigated user-specific factors comprised of physical ability, measured by the Physiological Profile Assessment (PPA); global cognition, measured by the Mini-Mental State Exam (MMSE); and risk-taking, measured by a self-assessment. Through Spearman’s ρ correlation analyses, this study found greater risk-taking to be associated with less use of the ladder safety handrail (ρsingle = -0.418, p < 0.0001; ρdual = -0.466, p < 0.0001). Focusing interventions to reduce propensity for risk-taking may promote safer use of ladders.

1. Introduction

Ladder falls are a frequent cause of unintentional injuries and fatalities; the estimated annual cost of ladder injuries in the U.S. is $24 billion [1,2]. Ladder injuries are particularly common among older adults at home (aged 65+ years) [1], but past ladder safety research has focused on falls of adults occurring at the workplace [3-5]. Similar investigation of ladder falls in older people working from home is emerging, yet gaps in our understanding remain. Furthermore, previous research has primarily studied the influence of environmental factors on ladder fall risk [6,7], and there is limited knowledge on user-specific factors that influence safe ladder use. Handrail use is a presumed safety strategy that can improve balance and enhance a person’s response to a destabilizing balance perturbation [8]. Not all individuals use the ladder handrails while on a stepladder, but there is a lack of knowledge characterizing handrail use. Relevant factors of general fall risk in older adults include physiological, cognitive, and psychological traits and abilities [9]. Thus, these user-specific factors may also be relevant to handrail use. This study quantifies the relationship of sensorimotor function (physiological factor), global cognition (cognitive factor), and risk taking (psychological factor) with handrail use of older adults when changing a lightbulb on a common household stepladder. The goal of this study is to improve current strategies for preventing unintentional ladder falls. We hypothesized that the user-specific factors would be associated with handrail use.


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Index

2min
pages 114-115

u Neural Network-based approximation of model predictive control applied to a flexible shaft servomechanism

13min
pages 107-110

Department of Bioengineering, McGowan Institute for Regenerative Medicine, Renerva, LLC

15min
pages 102-106

u Finite element analysis of stents under radial compression boundary conditions with different material properties

8min
pages 111-113

Analysis of stride segmentation methods to identify heel strike

14min
pages 98-101

Joseph Sukinik, Rosh Bharthi, Sarah Hemler, Kurt Beschorner

13min
pages 94-97

Human Movement and Balance Laboratory, Department of Bioengineering; Falls, Balance, and Injury Research Centre, Neuroscience Research Australia

10min
pages 90-93

u Topological descriptor selection for a quantitative structure-activity relationship (QSAR) model to assess PAH mutagenicity

12min
pages 81-84

Department of Bioengineering, Department of Electrical Engineering, Department of Mechanical Engineering, Innovation, Product Design, and Entrepreneurship Program

12min
pages 85-89

Department of Chemical Engineering, Heart, Lung, Blood, and Vascular Medicine Institute Division of Pulmonary, Allergy and Critical Care Medicine

14min
pages 76-80

u Demonstrating the antibiofouling property of the Clanger cicada wing with ANSYS Fluent simulations

13min
pages 72-75

u Levator Ani muscle dimension changes with gestational and maternal age

11min
pages 64-67

u Bioinformatic analysis of fibroblast-mediated therapy resistance in HER2+ breast cancer

11min
pages 60-63

Department of Bioengineering, Department of Psychiatry, Department of Neurology, Physician Scientist Training Program, University of Pittsburgh School of Medicine

15min
pages 55-59

u Fluid flow simulation of microphysiological knee joint-on-a-chip

14min
pages 49-54

Department of Bioengineering, Division of Vascular Surgery, University of Pittsburgh Medical Center, Department of Surgery, Department of Cardiothoracic Surgery, and Department of Chemical and Petroleum Engineering, McGowan Institute for Regenerative Medicine, and Center for Vascular Remodeling and Regeneration

16min
pages 44-48

Testing the compressive stiffness of endovascular devices

11min
pages 40-43

Department of Bioengineering, Carnegie Mellon University, McGowan Institute of Regenerative Medicine

15min
pages 35-39

Physical Metallurgy & Materials Design Laboratory, Department of Mechanical Engineering & Material Science

13min
pages 25-29

Hardware acceleration of k-means clustering for satellite image compression

15min
pages 20-24

Visualization and Image Analysis (VIA) Laboratory, Department of Bioengineering

16min
pages 30-34

Spike decontamination in local field potential signals from the primate superior colliculus

10min
pages 16-19

u Simulating the effect of different structures and materials on OLED extraction efficiency

8min
pages 13-15

u Representations of population activity during sensorimotor transformation for visually guided eye movements

14min
pages 7-12

Message from the Coeditors in Chief

2min
page 5

A Message from the Associate Dean for Research

3min
page 4
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.