La conducta de las plantas

Page 39

LA EVOLUCIÓN DE LAS PLANTAS EN EL TIEMPO PROFUNDO

1.2.4. Un mutualismo global: la geología y la vida La biósfera de Gaia. La hipótesis de Gaia surge en 1979 del proyecto de la NASA para descubrir vida en Marte. Lo que llamaba la atención eran las diferencias de la Tierra con los planetas más próximos y se postuló que la vida era la responsable de la atmósfera y de mantener las condiciones adecuadas. La vida autorregularía las condiciones esenciales (temperatura, composición química, salinidad en los océanos) por lo que tiende al equilibrio (homeostasis). Sin la vida, la Tierra debería estar en equilibrio químico y con 99 % de CO2 en la atmósfera (como Marte y Venus). No habría vestigios de oxígeno y nitrógeno, los que habrían reaccionado en su totalidad. Los argumentos principales que se esgrimían eran: la Tierra es un hábitat muy favorable para la vida; la vida alteró el ambiente planetario (química de la atmósfera y el mar); y el ambiente se mantuvo bastante estable a lo largo del tiempo geológico. Por ejemplo, la temperatura global terrestre permaneció dentro de parámetros aceptables para la vida a pesar del incremento en la energía solar. También la composición atmosférica y la salinidad de los océanos permanecen casi constantes. Se trata de un equilibrio que fluctúa entre los márgenes compatibles con la vida. Podría ser que el planeta tuviera desde un inicio las condiciones apropiadas para la vida. Pero Gaia propone lo opuesto: dadas las condiciones iniciales, la propia vida las modificó llegando a lo que es hoy día. Los nuevos ecosistemas. El movimiento de placas es único entre los planetas rocosos del sistema solar y quizás sea muy raro en el universo. ¿Por qué la vida necesitaría la tectónica de placas? (1) Un primer argumento es que el ciclo del agua incluye el hundi-

miento en la zona de subducción y la vuelta a surgir en los volcanes. El ciclo constante del agua y la coexistencia de superficies húmedas y secas resultó crucial para la vida. (2) La tectónica permite la regulación de la sal en los océanos. Las sales se lavan desde rocas erosionadas, pero la tectónica puede recuperarlas del mar. Por ejemplo, hace 6 Ma el Estrecho de Gibraltar fue bloqueado por la tectónica. El Mar Mediterráneo quedó aislado y se evaporó en 1 Ma. Se estableció un estrato de 3 km de espesor de sal sólida y bicarbonato, era un desierto tóxico. El 5 % de la sal oceánica global había desaparecido. De esta forma, los océanos regulan la salinidad en lugar de evolucionar a un estado cada vez más salado gracias al aporte continuo de rocas. (3) La formación y ruptura de supercontinentes genera nichos ecológicos nuevos y promueve climas y ambientes propicios para la biodiversidad. Un estudio determinó que las especies marinas tienden a ser más numerosos cuando los continentes se dividen. Se analizaron especies marinas en rocas sedimentarias y se correlacionó el grado de fragmentación continental con la biodiversidad. Durante y después de la fragmentación aumentó la diversidad marina. (4) Otro argumento dice que la disposición de los continentes determina las corrientes oceánicas y la circulación atmosférica. La diversidad marina ocurre en los bordes continentales y en los mares poco profundos. La fragmentación genera poblaciones aisladas en cada continente, con diferentes regímenes climáticos debido al efecto de borde (vecindad a las costas). Las corrientes oceánicas. Los océanos se estratifican en capas diferenciadas por temperatura y salinidad. Las capas se mue37


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

5.1.4. Estudio del caso: las plantas carnívoras

13min
pages 348-352

4.3.2. Las bacterias socias y enemigas de las raíces

13min
pages 313-317

Bibliografía

3min
pages 379-387

5.3.3. Los bosques y la geoingeniería botánica

9min
pages 375-378

5.3.2. Los desajustes fenológicos

12min
pages 371-374

5.2.4. El reconocimiento del parentesco

8min
pages 361-363

5.2.3. La toma de decisiones

5min
pages 359-360

5.2.5. La posibilidad de inteligencia en las plantas

8min
pages 364-366

5.2.2. La memoria en las plantas

7min
pages 356-358

5.1.3. Tropismos: humedad, temperatura, gravedad

14min
pages 343-347

4.4.3. Conducta en la rizósfera: las redes de micorrizas

2min
page 327

4.4.5. Estudios de casos

5min
pages 331-334

4.4.2. Mutualistas, digestores, benéficos y patógenos

13min
pages 322-326

5.1.2. Respuesta al tacto y sonido

5min
pages 341-342

4.4.4. Conducta en la rizósfera: menú de estrategias

8min
pages 328-330

4.3.3. Cómo afecta el cambio climático a la rizósfera

4min
pages 318-319

1.6.3. Las semillas, una cápsula del tiempo

9hr
pages 77-286

4.1.3. Historias Naturales: suelos manipulados

2min
page 295

4.2.4. La megafauna: el impacto en el suelo y las plantas

5min
pages 309-310

4.1.4. El ciclo del carbono

4min
pages 296-297

4.2.2. Las raíces en el centro de la rizósfera

7min
pages 305-307

4.1.2. La química de suelos y la biominería

15min
pages 290-294

4.2.3. La química del suelo en la rizósfera

2min
page 308

4.1.5. La salud del suelo

11min
pages 298-301

1.6.2. Sobre madera, tronco y árboles

8min
pages 74-76

1.5.3. Las plantas diseñan la geografía del planeta (400 Ma

8min
pages 68-70

1.4.2. La glaciación global Bola de Hielo (750-600 Ma

5min
pages 55-56

1.5.2. Llegan las raíces y hongos (450-400 Ma

7min
pages 65-67

1.3.5. El reloj circadiano

2min
page 51

1.4.3. El período ediacarano y cámbrico (600-500 Ma

6min
pages 57-59

1.3.4. Las células vegetales (1.500-1.000 Ma

7min
pages 48-50

1.3.3. Las células eucariotas (2.000-1.500 Ma

4min
pages 46-47

1.1.4. El aporte de los virus (3.500 Ma

4min
pages 29-30

1.2.3. El interior del planeta y la tectónica de placas

7min
pages 36-38

1.3.2. El oxígeno en la atmósfera (2.500-800 Ma

5min
pages 44-45

1.1.3. Las bacterias y arqueas (3.500-3.000 Ma

9min
pages 25-28

1.1.2. Los primeros indicios de la vida (3.500 Ma

7min
pages 22-24

1.2.4. Un mutualismo global: la geología y la vida

8min
pages 39-41

Prólogo - Hoja de Ruta

11min
pages 13-18

1.2.2. Recambio de rocas continentales (3.500-2.500 Ma

4min
pages 34-35
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.