2020 Ingenium - Journal of Undergraduate Research

Page 112

Biotelemetry: A brief history and future developments in lowering cost Kevin Xua, Mark Gartnera Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA a

Kevin is a junior in the Department of Bioengineering on the cellular engineering track from Mars, PA. Kevin has always had an interest in connecting biomedical concepts to technology and takes pride in helping to find novel approaches to existing problems. Kevin Xu

Mark Gartner

Dr. Gartner is a professor in the Department of Bioengineering, primarily teaching the Senior Design course. After receiving degrees from both Pitt and CMU, Dr. Gartner began his work in medical product design and development at UPMC. Dr. Gartner also co-founded Enison, Inc., a vertically-integrated incubator that developed medical products based on a “surface first� philosophy.

Significance Statement

The study of wildlife behavior is extremely important but is hard to accomplish in its current state due to the lack of accessibility for biotelemetric devices. Through the development and adaptation of current tracking systems, researchers are creating lower-cost devices that will allow for more widespread study of animal species.

Category: Review/perspective paper

Keywords: Biotelemetry, wildlife, tracking, history

110 Undergraduate Research at the Swanson School of Engineering

Abstract

Biotelemetry is crucial to a variety of wildlife and conservation-related assessments. The three main systems used in biotelemetry today (very high frequency transmitters, global positioning system tracking, and satellite tracking) all have advantages and disadvantages, but the expense and difficulty of implementing biotelemetric hardware remains a barrier to entering the field. The recent research and development into newer systems has made it easier to get involved in biotelemetry, yet the cost of hardware still makes it difficult to study many animals in diverse and widespread areas. Current research into creating lower-cost tracking devices using off-the-shelf, open-source hardware have helped pushed for more access to biotelemetric devices. The continuation of this research and the push for more accessible biotelemetric devices will allow researchers not to only learn more about wildlife behavior, but also factors such as wildlife biology and ecology.

1. Introduction

Wildlife research is a long-standing and extensive field, but the study of animals and wildlife has certainly not been easy. Humans have lived among animals for thousands of years, but for most of this time, information about animals was gathered by simple observation and chance, rather than finding a systematic or quantitative approach to observation. However, with the development of biotelemetry in the 1960s, researchers have been able to improve their study of the general movement and behavior of animals. Biotelemetry involves the capture and tagging of a species of interest with a transmitter device. Once tagged, the device transmits radio signals to reveal the location of the transmitter and also to relay any other information or data that may be collected. Location data is extremely important and can be used to study an animal’s preferred habitat, home range, and to understand population dynamics. Details into animal movement can reveal fundamental behaviors such as how the animal acquires food, shelter, or mates or how they survive in general. Typically, biotelemetry involves three different techniques: very high frequency (VHF) transmitters, global positioning system (GPS) tracking, and satellite tracking. VHF tracking is also known as direct tracking and is used in close proximity to the tracker in order to find the exact location of a tagged animal. GPS and satellite tracking allow an animal to be tracked globally and is useful for remote tracking or for tracking migrating animals, since locations can be accurately determined regardless of distance. While exciting developments are being made in the field of biotelemetry in the improvement of technologies, biotelemetric hardware is extremely expensive and frequently challenging to implement [1]. As a result, only a small number of units are typically purchased and only the most at-risk animals are studied. In addition, the access to these technologies can be extremely difficult in developing countries, and as a result, limitations on sample size must be made in studies [2]. In this paper we will explore (1) the progression and development of new technologies


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Index

2min
pages 121-125

Feasibility study of kinetic, thermoelectric, and RF enery harvesting powered sensor system

17min
pages 116-120

Biotelemetry: a brief history and future developments in lowering cost

12min
pages 112-115

Adventitial extracellular matrix from aneurysmal aorta fails to promote pericyte contractility

11min
pages 108-111

Crimped polymer microfibers produced via electrospinning: A review

12min
pages 104-107

fluid dynamics

15min
pages 99-103

WC-Co

12min
pages 90-93

Genetically engineering ocular probiotics to manipulate ocular immunity and disease

9min
pages 87-89

Monitoring the in-vitro extracellular matrix remodeling of tissue engineered vascular grafts

13min
pages 94-98

Characterization of hierarchical structures in remelted Ni-Mn-Ga substrates for directed energy deposition manufacturing of single crystals

13min
pages 79-82

Wireless signal transmission through hermetic walls in nuclear reactors

14min
pages 83-86

Laser-induced nanocarbon formation for tuning surface properties of commercial polymers

11min
pages 70-73

The role of oxygen functional groups in graphene oxide modified glassy carbon

12min
pages 74-78

Liam Martin, Megan R. Routzong, Ghazaleh Rostaminia, Pamela A. Moalli, Steven D. Abramowitch

15min
pages 65-69

techniques for the treatment of dry eye disease

9min
pages 62-64

Robust osteogenesis of mesenchymal stem cells in 3D bioactive hydrogel

8min
pages 59-61

Mechanical characterization of silk derived vascular grafts for human arterial implantation

18min
pages 54-58

Metformin administration impairs tendon wound healing

15min
pages 49-53

Lauren Grice, Chandler Fountain, Michel Modo

12min
pages 36-39

Michael Clancy, Sudarshan Sekhar, Aaron Batista, Patrick Loughlin

18min
pages 26-31

Progress in bioplastics: PLA and PHA

14min
pages 18-21

with spinal cord injury

14min
pages 32-35

Evaluating carbon reduction strategies for the University of Pittsburgh

16min
pages 13-17

Graduate Student Review Board – Ingenium 2020

1min
page 8

Tumor derived exosomes regulate dendritic cell maturation and activation

15min
pages 9-12

A Message from the Associate Dean for Research

2min
page 6

A Message from the Co-Editors-in-Chief

2min
page 7
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.