2020 Ingenium - Journal of Undergraduate Research

Page 54

Mechanical characterization of silk derived vascular grafts for human arterial implantation Patrick Iyaselea, Eoghan M. Cunnanea, Katherine L. Lorentza, Justin S. Weinbauma, e, and David A. Vorpa, b, c, d, f, g Department of Bioengineering, bMcGowan Institute for Regenerative Medicine, cDepartment of Surgery, d Center for Vascular Remodeling and Regeneration, e Department of Pathology, fDepartment of Chemical and Petroleum Engineering, gDepartment of Cardiothoracic Surgery a

Patrick Iyasele is a Senior Bioengineer from Milwaukee, Wisconsin. He is pursuing a Ph.D. in Bioengineering with focus on cardiovascular tissue engineering. He is a Foundation board member for Pitt B.R.O.T.H.E.R.H.O.O.D and is highly active in the Pitt Excel Program. Patrick Iyasele

David A. Vorp, PhD

David A. Vorp, PhD, is the Associate Dean for Research at the Swanson School of Engineering. He is also John A. Swanson Professor of Bioengineering, with secondary appointments in the Department of Cardiothoracic Surgery, the Department of Surgery, the Department of Chemical and Petroleum Engineering, and the Clinical and Translational Science Institute at the University of Pittsburgh.

Significance Statement

Occluded blood vessels are commonly treated by revascularization surgery utilizing vascular grafts. Compliance mismatch between the native coronary artery and a vein autograft often leads to restenosis and failure of roughly half of all autografts implanted during revascularization surgery [1]. Due to the limited quantity of autografts and required invasive harvesting, tissue engineered vascular grafts (TEVGs) are being researched and developed as an alternative. This paper presents preliminary data that suggests silk TEVGs may be a suitable alternative as they have similar mechanical properties to native tissue at low strain ratios.

Category: Experimental research

Keywords: TEVG, Silk, Mechanical Testing, Tangential Modulus Abbreviations: TEVG- Tissue Engineered Vascular Graft

52 Undergraduate Research at the Swanson School of Engineering

Abstract

Coronary artery disease occurs from the narrowing and blockage of the vessels supplying blood to the heart, leading to reduced blood flow and tissue damage. The preferred treatment for occluded small diameter arteries is revascularization surgery utilizing vascular autografts including the saphenous vein or internal thoracic artery. However, such autografts are limited in quantity, may be of poor quality and require invasive surgery to harvest and utilize. Additionally, compliance mismatch from the native coronary artery with a vein autograft often leads to restenosis and failure of roughly half of all autografts implanted during bypass surgery [1]. Tissue engineered vascular grafts (TEVGs) are currently being studied and developed as alternatives. A successful TEVG should mimic the mechanical properties of native vessels to reduce failure due to compliance mismatching, therefore, the objective of this study was to calculate the tangential modulus of a bombyx mori (BM) silk derived TEVG and compare it to the tangential modulus of the native vessels it is intended to replace. A BM scaffold was seeded with human cells and analyzed by uniaxial extension testing along with two explanted sheep carotid arteries. This entailed cutting the tube into ring specimens and tensile testing five replicates, recording the stress-strain curve and calculating the tangential modulus. The BM silk TEVG had a similar tangential modulus to a native sheep carotid artery at low strain ratios (1.3) but was significantly lower at high strain ratios (1.9).

1. Introduction

Cardiovascular disease is the leading cause of death worldwide, with most deaths associated with coronary heart disease, cerebrovascular disease, peripheral arterial disease, and deep vein thrombosis. These diseases often occur from the narrowing and blockage of blood vessels leading to reduced blood flow and tissue damage due to inadequate nutrient supply [1]. The preferred treatment for occluded small diameter arteries (such as the coronary arteries) is revascularization surgery utilizing vascular grafts. During this surgery, a graft is used to replace or bypass the damaged or occluded vessel. Around 400,000 coronary artery bypass grafting (CABG) procedures are performed each year in the United States alone [2]. The saphenous vein and internal thoracic artery are commonly used for autografts but those are limited in quantity, may be of poor quality and require invasive surgery to harvest and utilize [1]. Compliance mismatch from the native coronary artery and a vein autograft leads to restenosis and failure of roughly half of all autografts implanted during bypass surgery [1]. Tissue engineered vascular grafts (TEVGs) are currently being studied and developed as alternatives. An ideal TEVG should mimic the mechanical properties of native tissues. Compliance mismatch from the native coronary artery and a vein autograft lead to restenosis and failure of roughly half of all autografts implanted during bypass surgery [1]. Tangential modulus has been a useful property to ascertain in this regard as it describes the stiffness of a material at certain mechanical strains that are experimentally tested during uniaxial


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Index

2min
pages 121-125

Feasibility study of kinetic, thermoelectric, and RF enery harvesting powered sensor system

17min
pages 116-120

Biotelemetry: a brief history and future developments in lowering cost

12min
pages 112-115

Adventitial extracellular matrix from aneurysmal aorta fails to promote pericyte contractility

11min
pages 108-111

Crimped polymer microfibers produced via electrospinning: A review

12min
pages 104-107

fluid dynamics

15min
pages 99-103

WC-Co

12min
pages 90-93

Genetically engineering ocular probiotics to manipulate ocular immunity and disease

9min
pages 87-89

Monitoring the in-vitro extracellular matrix remodeling of tissue engineered vascular grafts

13min
pages 94-98

Characterization of hierarchical structures in remelted Ni-Mn-Ga substrates for directed energy deposition manufacturing of single crystals

13min
pages 79-82

Wireless signal transmission through hermetic walls in nuclear reactors

14min
pages 83-86

Laser-induced nanocarbon formation for tuning surface properties of commercial polymers

11min
pages 70-73

The role of oxygen functional groups in graphene oxide modified glassy carbon

12min
pages 74-78

Liam Martin, Megan R. Routzong, Ghazaleh Rostaminia, Pamela A. Moalli, Steven D. Abramowitch

15min
pages 65-69

techniques for the treatment of dry eye disease

9min
pages 62-64

Robust osteogenesis of mesenchymal stem cells in 3D bioactive hydrogel

8min
pages 59-61

Mechanical characterization of silk derived vascular grafts for human arterial implantation

18min
pages 54-58

Metformin administration impairs tendon wound healing

15min
pages 49-53

Lauren Grice, Chandler Fountain, Michel Modo

12min
pages 36-39

Michael Clancy, Sudarshan Sekhar, Aaron Batista, Patrick Loughlin

18min
pages 26-31

Progress in bioplastics: PLA and PHA

14min
pages 18-21

with spinal cord injury

14min
pages 32-35

Evaluating carbon reduction strategies for the University of Pittsburgh

16min
pages 13-17

Graduate Student Review Board – Ingenium 2020

1min
page 8

Tumor derived exosomes regulate dendritic cell maturation and activation

15min
pages 9-12

A Message from the Associate Dean for Research

2min
page 6

A Message from the Co-Editors-in-Chief

2min
page 7
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.