2020 Ingenium - Journal of Undergraduate Research

Page 87

Ingenium 2020

Genetically engineering ocular probiotics to manipulate ocular immunity and disease Yannis Rigasa, b, Benjamin Treatb, Anthony St. Legerb, c Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA b Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA c Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA a

Yannis Rigas is a current bioengineering major on the track of cellular engineering. His current research interests include microbiology, immunology, genetic and microbial engineering. Yannis plans to attend graduate school upon graduating from the University of Pittsburgh. Yannis Rigas

Dr. Anthony St. Leger

Dr. St. Leger is an ocular immunologist in the Department of Ophthalmology at the University of Pittsburgh. Since joining Pitt in late 2017, his lab has focused on understanding the relationships between the microbiome and ocular immune system during health and disease. Specifically, his lab currently investigates how the microbiome may be manipulated to alleviate ocular surface disease.

Significance Statement

Every year eye-related diseases account for a huge financial and medical burden. For example, in the U.S., approximately 1 million doctor visits and $175 million are spent annually on treating keratitis and contact lens disorders [1]. In an effort to characterize and manipulate the interactions between ocular immunity and microbiome, our lab is developing a model to characterize and manipulate the relationship between the microbiome and ocular immunity. To study this, we are developing a model that allows the study of commensal bacterium, Corynebacterium mastitidis, and its interactions with ocular immunity. The long-term aim of these studies is the development of a vehicle for long-term therapy delivery to the ocular surface in order to help treat ocular diseases.

Category: Methods

Keywords: Ocular immunity, genetic/microbial engineering, probiotic, and microbiology Abbreviations: C. mast (Corynebacterium mastitidis), IL-17 (Interleukin 17), γδTC (gamma delta T-cells), WT (Wild Type)

Abstract

Recently, our lab discovered that the eye harbors a microbiome that includes Corynebacterium mastitidis, which can stimulate local immunity to protect the eye from more serious infections. From our previous work, we know that C. mast can remain on the ocular surface indefinitely. Therefore, the goal of this project is to genetically engineer C. mast, so that it can act as a natural vehicle to deliver therapeutics locally to alleviate or prevent ocular surface diseases. Here, we took initial steps towards this goal by genetically modifying the C. mast genome so that a fluorescent protein is selected for by utilizing an antibiotic resistance cassette. This fluorescence will allow for real-time in vivo detection of genetically modified C. mast. In this study we have discovered four possible mutants that are resistant to the antibiotic, kanamycin, and fluoresce with varying degrees intensity in the red channel. We hypothesized that these mutants would retain the ability to colonize the eye and induce immunity similar to wild type C. mast. Indeed, we observed that all four mutants were able to colonize the eyes of mice and elicit immune responses similar to wild type C. mast. We further demonstrated that genetically engineered strains of C. mast can effectively colonize the ocular mucosa and elicit an immune response similar to WT C. mast.

1. Introduction

Previously, research on the ocular surface has shown that Corynebacterium mastitidis is stably present on the conjunctiva, an ocular mucosal immune tissue, while displaying commensal properties by eliciting an immune response from γδT cells. The presence of this commensal bacterium, and its accompanying immune response were previously shown to protect the eye from pathogenic eye infections caused by Pseudomonas aeruginosa and Candida albicans. [2]. Through a series of experiments, we were able to link ocular colonization of C. mast with an induced antimicrobial immune response [2]. Due to the ability of this microbe to asymptomatically thrive at the ocular surface for indefinite periods of time, C. mast is an attractive candidate to engineer as a long-term drug delivery vehicle for inflammatory diseases like keratitis, Dry Eye Disease, and Sjogren’s Syndrome. A similar technique was used to deliver the immune regulating cytokine, interleukin (IL)-10, in mice with inflammatory bowel syndrome (IBS). More specifically, when Lactococcus lactis was engineered to express IL-10, disease associated with colitis was reduced compared to controls in two separate mouse models [3]. In this current study, we successfully genetically engineered C. mast by electroporation with a novel plasmid, and showed that C. mast can stably remain on the ocular surface and elicit an immune response similar to the WT strain. This discovery will pave the way for future modifications that will one day allow for a longterm delivery of therapeutics to the ocular surface.

85


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Index

2min
pages 121-125

Feasibility study of kinetic, thermoelectric, and RF enery harvesting powered sensor system

17min
pages 116-120

Biotelemetry: a brief history and future developments in lowering cost

12min
pages 112-115

Adventitial extracellular matrix from aneurysmal aorta fails to promote pericyte contractility

11min
pages 108-111

Crimped polymer microfibers produced via electrospinning: A review

12min
pages 104-107

fluid dynamics

15min
pages 99-103

WC-Co

12min
pages 90-93

Genetically engineering ocular probiotics to manipulate ocular immunity and disease

9min
pages 87-89

Monitoring the in-vitro extracellular matrix remodeling of tissue engineered vascular grafts

13min
pages 94-98

Characterization of hierarchical structures in remelted Ni-Mn-Ga substrates for directed energy deposition manufacturing of single crystals

13min
pages 79-82

Wireless signal transmission through hermetic walls in nuclear reactors

14min
pages 83-86

Laser-induced nanocarbon formation for tuning surface properties of commercial polymers

11min
pages 70-73

The role of oxygen functional groups in graphene oxide modified glassy carbon

12min
pages 74-78

Liam Martin, Megan R. Routzong, Ghazaleh Rostaminia, Pamela A. Moalli, Steven D. Abramowitch

15min
pages 65-69

techniques for the treatment of dry eye disease

9min
pages 62-64

Robust osteogenesis of mesenchymal stem cells in 3D bioactive hydrogel

8min
pages 59-61

Mechanical characterization of silk derived vascular grafts for human arterial implantation

18min
pages 54-58

Metformin administration impairs tendon wound healing

15min
pages 49-53

Lauren Grice, Chandler Fountain, Michel Modo

12min
pages 36-39

Michael Clancy, Sudarshan Sekhar, Aaron Batista, Patrick Loughlin

18min
pages 26-31

Progress in bioplastics: PLA and PHA

14min
pages 18-21

with spinal cord injury

14min
pages 32-35

Evaluating carbon reduction strategies for the University of Pittsburgh

16min
pages 13-17

Graduate Student Review Board – Ingenium 2020

1min
page 8

Tumor derived exosomes regulate dendritic cell maturation and activation

15min
pages 9-12

A Message from the Associate Dean for Research

2min
page 6

A Message from the Co-Editors-in-Chief

2min
page 7
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.