L3 Metoda figurativă
Descoperim, înțelegem, exemplificăm Metoda figurativă sau metoda grafică se recomandă atunci când dependențele între mărimi nu sunt foarte evidente, dar pot fi ilustrate intuitiv prin desene, schițe, grafice, figuri geometrice. Reprezentarea intuitivă nu este universală, ea diferă de la o problemă la alta, creativitatea rezolvitorului având aici un rol important. De regulă, se desenează un segment sau un dreptunghi care reprezintă valoarea uneia dintre mărimi sau pe unul dintre numerele căutate și care se consideră unitate. Celălalt sau celelalte numere se vor reprezenta luând ca unitate primul segment și având în vedere relațiile date în enunțul problemei.
Cele mai frecvente probleme în care se folosește metoda figurativă, cu reprezentări de segmente, au ca model matematic aflarea a două numere,, în condiții ț date. Aplicația 1. Calculați numerele a și b, în fiecare dintre cazurile: Desen Rezolvare Ipoteză Considerăm segmentul care reprezintă numărul a ca unitate. s – d = 2 · a (două unități); 1. Se cunosc suma și diferența numerelor: a + b = s; b – a = d 2. Se cunosc suma și câtul numerelor: a + b = s; b : a = c, a ≠ 0 3. Se cunosc diferența și câtul numerelor: b – a = d; b : a = c, a z 0
a = (2 · a) : 2; b = a + d. a = s : (c + 1); b = a · c. a = d : (c – 1); b = a · c.
Observație. Pentru a nu încărca figura, nu vom scrie de fiecare dată pe desen care este segmentul unitate, dar vom preciza acest fapt în rezolvare.
Știm să aplicăm, identificăm conexiuni Metoda figurativă se folosește în multe alte situații sau poate fi și o parte, o secvență a rezolvării prin alte metode aritmetice, având rolul de a ușura raționamentul și de a accelera rezolvarea. Problema 1. Barbu, Dragoș și Eugen au împreună 161 de lei. Barbu are cu 33 de lei mai mulți decât Dragoș și cu 23 lei mai puțini decât Eugen. Aflați câți lei are fiecare. Soluție: Observăm că Dragos este cel care are cea mai mică sumă de bani. Reprezentăm această sumă printr-un segment pe care îl considerăm unitate.
64